|
|
|
@ -72,3 +72,31 @@ class EffectiveSEModule(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EffectiveSqueezeExcite = EffectiveSEModule # alias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SqueezeExciteCl(nn.Module):
|
|
|
|
|
""" SE Module as defined in original SE-Nets with a few additions
|
|
|
|
|
Additions include:
|
|
|
|
|
* divisor can be specified to keep channels % div == 0 (default: 8)
|
|
|
|
|
* reduction channels can be specified directly by arg (if rd_channels is set)
|
|
|
|
|
* reduction channels can be specified by float rd_ratio (default: 1/16)
|
|
|
|
|
* global max pooling can be added to the squeeze aggregation
|
|
|
|
|
* customizable activation, normalization, and gate layer
|
|
|
|
|
"""
|
|
|
|
|
def __init__(
|
|
|
|
|
self, channels, rd_ratio=1. / 16, rd_channels=None, rd_divisor=8,
|
|
|
|
|
bias=True, act_layer=nn.ReLU, gate_layer='sigmoid'):
|
|
|
|
|
super().__init__()
|
|
|
|
|
if not rd_channels:
|
|
|
|
|
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.)
|
|
|
|
|
self.fc1 = nn.Linear(channels, rd_channels, bias=bias)
|
|
|
|
|
self.act = create_act_layer(act_layer, inplace=True)
|
|
|
|
|
self.fc2 = nn.Linear(rd_channels, channels, bias=bias)
|
|
|
|
|
self.gate = create_act_layer(gate_layer)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x_se = x.mean((1, 2), keepdims=True) # FIXME avg dim [1:n-1], don't assume 2D NHWC
|
|
|
|
|
x_se = self.fc1(x_se)
|
|
|
|
|
x_se = self.act(x_se)
|
|
|
|
|
x_se = self.fc2(x_se)
|
|
|
|
|
return x * self.gate(x_se)
|