Add ResNet101D, 152D, and 200D weights, remove meh 66d model

pull/322/head
Ross Wightman 4 years ago
parent 198f6ea0f3
commit b1f1228a41

@ -2,6 +2,12 @@
## What's New
### Dec 18, 2020
* Add ResNet-101D, ResNet-152D, and ResNet-200D weights trained @ 256x256
* 256x256 val (top-1) - 101D (82.33), 152D (83.08), 200D (83.25)
* 288x288 val, 1.0 crop - 101D (82.64), 152D (83.48), 200D (83.76)
* 320x320 val, 1.0 crop - 101D (83.00), 152D (83.66), 200D (84.01)
### Dec 7, 2020
* Simplify EMA module (ModelEmaV2), compatible with fully torchscripted models
* Misc fixes for SiLU ONNX export, default_cfg missing from Feature extraction models, Linear layer w/ AMP + torchscript

@ -55,13 +55,18 @@ default_cfgs = {
'resnet50d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet66d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet101': _cfg(url='', interpolation='bicubic'),
'resnet101d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet101d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
'resnet152': _cfg(url='', interpolation='bicubic'),
'resnet152d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet152d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
'resnet200': _cfg(url='', interpolation='bicubic'),
'resnet200d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
'resnet200d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
@ -142,6 +147,9 @@ default_cfgs = {
'seresnet152': _cfg(
url='',
interpolation='bicubic'),
'seresnet152d': _cfg(
url='',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
'seresnext26_32x4d': _cfg(
@ -683,14 +691,6 @@ def resnet50d(pretrained=False, **kwargs):
return _create_resnet('resnet50d', pretrained, **model_args)
@register_model
def resnet66d(pretrained=False, **kwargs):
"""Constructs a ResNet-66-D model.
"""
model_args = dict(block=BasicBlock, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet66d', pretrained, **model_args)
@register_model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
@ -1151,6 +1151,14 @@ def seresnet152(pretrained=False, **kwargs):
return _create_resnet('seresnet152', pretrained, **model_args)
@register_model
def seresnet152d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('seresnet152d', pretrained, **model_args)
@register_model
def seresnext26_32x4d(pretrained=False, **kwargs):
model_args = dict(

Loading…
Cancel
Save