Merge pull request #263 from rwightman/fixes_oct2020

Fixes for upcoming PyPi release
pull/268/head
Ross Wightman 4 years ago committed by GitHub
commit af3299ba4a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -24,7 +24,7 @@ MAX_FWD_FEAT_SIZE = 448
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS[:-1]))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
"""Run a single forward pass with each model"""

@ -277,11 +277,12 @@ def build_model_with_cfg(
if pruned:
model = adapt_model_from_file(model, variant)
# for classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000))
if pretrained:
load_pretrained(
model,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3),
num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3),
filter_fn=pretrained_filter_fn, strict=pretrained_strict)
if features:

@ -776,6 +776,7 @@ def _create_hrnet(variant, pretrained, **model_kwargs):
strict = True
if model_kwargs.pop('features_only', False):
model_cls = HighResolutionNetFeatures
model_kwargs['num_classes'] = 0
strict = False
return build_model_with_cfg(

@ -6,9 +6,14 @@ from .activations_jit import *
from .activations_me import *
from .config import is_exportable, is_scriptable, is_no_jit
# PyTorch has an optimized, native 'silu' (aka 'swish') operator as of PyTorch 1.7. This code
# will use native version if present. Eventually, the custom Swish layers will be removed
# and only native 'silu' will be used.
_has_silu = 'silu' in dir(torch.nn.functional)
_ACT_FN_DEFAULT = dict(
swish=swish,
silu=F.silu if _has_silu else swish,
swish=F.silu if _has_silu else swish,
mish=mish,
relu=F.relu,
relu6=F.relu6,
@ -26,7 +31,8 @@ _ACT_FN_DEFAULT = dict(
)
_ACT_FN_JIT = dict(
swish=swish_jit,
silu=F.silu if _has_silu else swish_jit,
swish=F.silu if _has_silu else swish_jit,
mish=mish_jit,
hard_sigmoid=hard_sigmoid_jit,
hard_swish=hard_swish_jit,
@ -34,7 +40,8 @@ _ACT_FN_JIT = dict(
)
_ACT_FN_ME = dict(
swish=swish_me,
silu=F.silu if _has_silu else swish_me,
swish=F.silu if _has_silu else swish_me,
mish=mish_me,
hard_sigmoid=hard_sigmoid_me,
hard_swish=hard_swish_me,
@ -42,7 +49,8 @@ _ACT_FN_ME = dict(
)
_ACT_LAYER_DEFAULT = dict(
swish=Swish,
silu=nn.SiLU if _has_silu else Swish,
swish=nn.SiLU if _has_silu else Swish,
mish=Mish,
relu=nn.ReLU,
relu6=nn.ReLU6,
@ -60,7 +68,8 @@ _ACT_LAYER_DEFAULT = dict(
)
_ACT_LAYER_JIT = dict(
swish=SwishJit,
silu=nn.SiLU if _has_silu else SwishJit,
swish=nn.SiLU if _has_silu else SwishJit,
mish=MishJit,
hard_sigmoid=HardSigmoidJit,
hard_swish=HardSwishJit,
@ -68,7 +77,8 @@ _ACT_LAYER_JIT = dict(
)
_ACT_LAYER_ME = dict(
swish=SwishMe,
silu=nn.SiLU if _has_silu else SwishMe,
swish=nn.SiLU if _has_silu else SwishMe,
mish=MishMe,
hard_sigmoid=HardSigmoidMe,
hard_swish=HardSwishMe,

@ -37,7 +37,7 @@ def _cfg(url='', **kwargs):
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': '', 'classifier': 'head',
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
@ -48,7 +48,8 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
),
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_base_p16_224-4e355ebd.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
'vit_base_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
@ -56,7 +57,9 @@ default_cfgs = {
'vit_base_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch16_224': _cfg(),
'vit_large_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_large_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
@ -206,7 +209,7 @@ class VisionTransformer(nn.Module):
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm):
super().__init__()
self.num_classes = num_classes
self.embed_dim = embed_dim
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
@ -305,10 +308,9 @@ def vit_small_patch16_224(pretrained=False, **kwargs):
@register_model
def vit_base_patch16_224(pretrained=False, **kwargs):
if pretrained:
# NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model
kwargs.setdefault('qk_scale', 768 ** -0.5)
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = default_cfgs['vit_base_patch16_224']
if pretrained:
load_pretrained(
@ -340,8 +342,12 @@ def vit_base_patch32_384(pretrained=False, **kwargs):
@register_model
def vit_large_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
model = VisionTransformer(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = default_cfgs['vit_large_patch16_224']
if pretrained:
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
return model

@ -1 +1 @@
__version__ = '0.2.2'
__version__ = '0.3.0'

Loading…
Cancel
Save