Test script for parsing image files

pull/580/head
Sander van Leeuwen 4 years ago
parent 7afadae610
commit acc0d37d96

@ -0,0 +1,322 @@
#!/usr/bin/env python3
""" ImageNet Validation Script
This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained
models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes
canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit.
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import os
import csv
import glob
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
from collections import OrderedDict
from contextlib import suppress
import torchextractor as tx
import torchvision.transforms as T
from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models
from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_legacy
from timm.data.transforms import _pil_interp
from PIL import Image
import json
import numpy as np
import cv2
has_apex = False
try:
from apex import amp
has_apex = True
except ImportError:
pass
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('validate')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
parser.add_argument('--split', metavar='NAME', default='validation',
help='dataset split (default: validation)')
parser.add_argument('--model', '-m', metavar='NAME', default='dpn92',
help='model architecture (default: dpn92)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop pct')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=None,
help='Number classes in dataset')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
help='disable test time pool')
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--amp', action='store_true', default=False,
help='Use AMP mixed precision. Defaults to Apex, fallback to native Torch AMP.')
parser.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
parser.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
parser.add_argument('--tf-preprocessing', action='store_true', default=False,
help='Use Tensorflow preprocessing pipeline (require CPU TF installed')
parser.add_argument('--use-ema', dest='use_ema', action='store_true',
help='use ema version of weights if present')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
parser.add_argument('--legacy-jit', dest='legacy_jit', action='store_true',
help='use legacy jit mode for pytorch 1.5/1.5.1/1.6 to get back fusion performance')
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME',
help='Real labels JSON file for imagenet evaluation')
parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME',
help='Valid label indices txt file for validation of partial label space')
parser.add_argument('--hook', dest='hook', action='store_true',
help='hook activations')
parser.add_argument('--prune', dest='prune', type=float, default=0.0,
help='prune linear layers')
parser.add_argument('--file', default='', type=str, help='Image file')
def validate(args):
# might as well try to validate something
args.pretrained = args.pretrained or not args.checkpoint
args.prefetcher = not args.no_prefetcher
amp_autocast = suppress # do nothing
if args.amp:
if has_native_amp:
args.native_amp = True
elif has_apex:
args.apex_amp = True
else:
_logger.warning("Neither APEX or Native Torch AMP is available.")
assert not args.apex_amp or not args.native_amp, "Only one AMP mode should be set."
if args.native_amp:
amp_autocast = torch.cuda.amp.autocast
_logger.info('Validating in mixed precision with native PyTorch AMP.')
elif args.apex_amp:
_logger.info('Validating in mixed precision with NVIDIA APEX AMP.')
else:
_logger.info('Validating in float32. AMP not enabled.')
if args.legacy_jit:
set_jit_legacy()
# create model
model = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.num_classes,
in_chans=3,
global_pool=args.gp,
scriptable=args.torchscript)
if args.num_classes is None:
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
args.num_classes = model.num_classes
if args.checkpoint:
load_checkpoint(model, args.checkpoint, args.use_ema)
param_count = sum([m.numel() for m in model.parameters()])
_logger.info('Model %s created, param count: %d' % (args.model, param_count))
data_config = resolve_data_config(vars(args), model=model, use_test_size=True, verbose=True)
test_time_pool = False
if not args.no_test_pool:
model, test_time_pool = apply_test_time_pool(model, data_config, use_test_size=True)
# standard PyTorch mean-std input image normalization
transform = T.Compose([
T.Resize((data_config["input_size"][1], data_config["input_size"][2]), _pil_interp("bicubic")),
T.CenterCrop(data_config["input_size"][1]),
T.ToTensor(),
T.Normalize(mean=torch.tensor(data_config["mean"]), std=torch.tensor(data_config["std"]))
])
if (args.hook):
from torchsummary import summary
layer_names = []
sparse_layers = 0
layer_nr = 0
summary(model.cuda(), (3, 224, 224))
for name, module in model.named_modules():
layer_names.append(name)
#if (isinstance(module, torch.nn.Linear)):
# print('Linear ', layer_nr, ' : ', name, ' shape: ', module.weight.shape)
if (hasattr(module, 'weight') and isinstance(module, torch.nn.Linear)):
weights = module.weight.detach()
zeros = weights.numel() - weights.nonzero().size(0)
sparsity = zeros / weights.numel() * 100.0
average = torch.mean(abs(weights))
small_val = torch.sum((abs(weights) < 0.05).int()).item() / weights.numel() * 100.0
#small_pos = torch.sum((weights < 0.05).int()).item() / weights.numel() * 100.0
#small_neg = torch.sum((weights < -0.05).int()).item() / weights.numel() * 100.0
if (small_val > 70):
#print("layer: ", name, module, ", sparsity: ", sparsity, " small=", int(small_val), ", < 0.05: ", int(small_pos), " neg: ", int(small_neg))
print("layer: ", name, module, " small=", int(small_val), ' sparse=', sparsity)
sparse_layers += 1
else:
print("layer: ", name, module, " mean=", average)
# if (name == "model.backbone.conv_stem"):
# print(module.weight.shape, module.weight.detach().numpy())
layer_nr += 1
exit()
print(layer_names)
#model = tx.Extractor(model, layer_names)
if (args.prune != 0.0):
# prune all linear layer weights with value < args.prune
for name, module in model.named_modules():
args.prune = 0
if args.torchscript:
torch.jit.optimized_execution(True)
model = torch.jit.script(model)
model = model.cuda()
if args.apex_amp:
model = amp.initialize(model, opt_level='O1')
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu)))
with open(args.data + '/imagenet_class_index.json') as f:
imagenet_dict = json.load(f)
model.eval()
if (args.file):
im = Image.open(args.file)
print('Image ', args.file, ' size=', im.size)
img = transform(im).unsqueeze(0)
img = img.cuda()
with torch.no_grad():
x_class = model(img)
max_idx = np.argmax(x_class.cpu().detach().numpy())
print(x_class[0][max_idx], max_idx)
#for i in range(1000):
# if (x_class[0][i] > 0.5):
# print('Index: ', i, ' ', x_class[0][i], ' ', imagenet_dict[str(i)][1])
#class_name = imagenet_dict[]
frame = cv2.cvtColor(np.uint8(im), cv2.COLOR_RGB2BGR)
cv2.imshow('CLASS: ' + str(max_idx) + ' ' + imagenet_dict[str(max_idx)][1], np.uint8(frame))
ch = cv2.waitKey()
def main():
setup_default_logging()
args = parser.parse_args()
model_cfgs = []
model_names = []
if os.path.isdir(args.checkpoint):
# validate all checkpoints in a path with same model
checkpoints = glob.glob(args.checkpoint + '/*.pth.tar')
checkpoints += glob.glob(args.checkpoint + '/*.pth')
model_names = list_models(args.model)
model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)]
else:
if args.model == 'all':
# validate all models in a list of names with pretrained checkpoints
args.pretrained = True
model_names = list_models(pretrained=True, exclude_filters=['*_in21k', '*_in22k'])
model_cfgs = [(n, '') for n in model_names]
elif not is_model(args.model):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model)
model_cfgs = [(n, '') for n in model_names]
if len(model_cfgs):
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
try:
start_batch_size = args.batch_size
for m, c in model_cfgs:
batch_size = start_batch_size
args.model = m
args.checkpoint = c
r = {}
while not r and batch_size >= args.num_gpu:
torch.cuda.empty_cache()
try:
args.batch_size = batch_size
print('Validating with batch size: %d' % args.batch_size)
r = validate(args)
except RuntimeError as e:
if batch_size <= args.num_gpu:
print("Validation failed with no ability to reduce batch size. Exiting.")
raise e
batch_size = max(batch_size // 2, args.num_gpu)
print("Validation failed, reducing batch size by 50%")
except KeyboardInterrupt as e:
pass
else:
validate(args)
if __name__ == '__main__':
main()

@ -336,7 +336,8 @@ class EfficientNet(nn.Module):
def __init__(self, block_args, num_classes=1000, num_features=1280, in_chans=3, stem_size=32,
channel_multiplier=1.0, channel_divisor=8, channel_min=None,
output_stride=32, pad_type='', fix_stem=False, act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'):
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'):
# se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'):
super(EfficientNet, self).__init__()
norm_kwargs = norm_kwargs or {}
@ -362,6 +363,7 @@ class EfficientNet(nn.Module):
# Head + Pooling
self.conv_head = create_conv2d(head_chs, self.num_features, 1, padding=pad_type)
self.bn2 = norm_layer(self.num_features, **norm_kwargs)
#self.bn2 = nn.LayerNorm([self.num_features, 7, 7], **norm_kwargs)
self.act2 = act_layer(inplace=True)
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

@ -596,14 +596,14 @@ def main():
_logger.info("Distributing BatchNorm running means and vars")
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)
if model_ema is not None and not args.model_ema_force_cpu:
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
ema_eval_metrics = validate(
model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
eval_metrics = ema_eval_metrics
else:
eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)
if lr_scheduler is not None:
# step LR for next epoch

@ -216,6 +216,7 @@ def validate(args):
input = input.contiguous(memory_format=torch.channels_last)
model(input)
end = time.time()
for batch_idx, (input, target) in enumerate(loader):
if args.no_prefetcher:
target = target.cuda()
@ -234,6 +235,15 @@ def validate(args):
if real_labels is not None:
real_labels.add_result(output)
print(input.shape)
print(target.shape)
print(output.shape)
import numpy as np
max_idx = np.argmax(output[0].cpu().detach().numpy())
print('Output: ', max_idx, output[0][max_idx], ' should be ', target[0])
print(output[0])
exit()
# measure accuracy and record loss
acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5))
losses.update(loss.item(), input.size(0))

Loading…
Cancel
Save