|
|
|
@ -24,9 +24,11 @@ class PatchEmbed(nn.Module):
|
|
|
|
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
|
|
|
|
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
|
|
|
|
self.flatten = flatten
|
|
|
|
|
if norm_layer is not None:
|
|
|
|
|
assert flatten, "Only use `norm_layer` if `flatten` is True"
|
|
|
|
|
|
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
|
|
|
self.norm = norm_layer(embed_dim) if norm_layer else None
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
@ -35,5 +37,5 @@ class PatchEmbed(nn.Module):
|
|
|
|
|
x = self.proj(x)
|
|
|
|
|
if self.flatten:
|
|
|
|
|
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
|
|
|
|
x = self.norm(x)
|
|
|
|
|
x = self.norm(x)
|
|
|
|
|
return x
|
|
|
|
|