Update metaformers.py

pull/1647/head
Fredo Guan 2 years ago
parent 8dbba278b7
commit a776d98d3f

@ -1,3 +1,13 @@
"""
MetaFormer baselines including IdentityFormer, RandFormer, PoolFormerV2,
ConvFormer and CAFormer.
original copyright below
"""
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -11,12 +21,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MetaFormer baselines including IdentityFormer, RandFormer, PoolFormerV2,
ConvFormer and CAFormer.
Some implementations are modified from timm (https://github.com/rwightman/pytorch-image-models).
"""
from collections import OrderedDict
from functools import partial
import torch
@ -712,10 +716,27 @@ class MetaFormer(nn.Module):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
print("not implemented")
@torch.jit.ignore
def no_weight_decay(self):
return {'norm'}
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes=0, global_pool=None):
if global_pool is not None:
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
if num_classes == 0:
self.head.norm = nn.Identity()
self.head.fc = nn.Identity()
else:
if not self.head_norm_first:
norm_layer = type(self.stem[-1]) # obtain type from stem norm
self.head.norm = norm_layer(self.num_features)
self.head.fc = nn.Linear(self.num_features, num_classes)
def forward_head(self, x, pre_logits: bool = False):
if pre_logits:

Loading…
Cancel
Save