Structure Hugging Face Docs (#1575)

* 🎨 structure docs

* 🚧 wip docs

* 📝 add installation doc

* 📝 wip docs

* 📝 wip docs

* 📝 wip docs

* 📝 wip docs

* 📝 wip docs

* 📝 add basic reference docs

* 📝 remove augmentation from toctree

* 👷 update pr doc builder to bugfix branch

* 📝 wip docs

* 🚧 wip

* 👷 bump CI

* 🚧 wip

* 🚧 bump CI

* 🚧 wip

* 🚧 wip

* 🚧 wip

* 📝 add hf hub tutorial doc

* 🔥 remove inference tut

* 🚧 wip

* 📝 wip docs

* 📝 wip docs

* 📝 update docs

* 📝 move validation script doc up in order

* 🎨 restructure to remove legacy docs

* 📝 update index doc

* 📝 update number of pretrained models

* Update hfdocs/README.md

* Update .github/workflows/build_pr_documentation.yml

* Update build_pr_documentation.yml

* bump

* 📌 update gh action to use main branch

* 🔥 remove comment
pull/1612/head
Nathan Raw 1 year ago committed by GitHub
parent 960f5f92e6
commit 9f5bba9ef9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -17,3 +17,4 @@ jobs:
package_name: timm
repo_owner: rwightman
path_to_docs: pytorch-image-models/hfdocs/source
version_tag_suffix: ""

@ -0,0 +1,14 @@
# Hugging Face Timm Docs
## Getting Started
```
pip install git+https://github.com/huggingface/doc-builder.git@main#egg=hf-doc-builder
pip install watchdog black
```
## Preview the Docs Locally
```
doc-builder preview timm hfdocs/source
```

@ -1,149 +1,160 @@
- sections:
- local: index
title: Pytorch Image Models (timm)
title: Home
- local: quickstart
title: Quickstart
- local: installation
title: Installation
title: Get started
- sections:
- local: feature_extraction
title: Using Pretrained Models as Feature Extractors
- local: training_script
title: Training With The Official Training Script
- local: hf_hub
title: Share and Load Models from the 🤗 Hugging Face Hub
title: Tutorials
- sections:
- local: models
title: Model Summaries
- local: results
title: Results
- local: scripts
title: Scripts
- local: training_hparam_examples
title: Training Examples
- local: feature_extraction
title: Feature Extraction
- local: changes
title: Recent Changes
- local: archived_changes
title: Archived Changes
- local: model_pages
title: Model Pages
isExpanded: false
sections:
- local: models/adversarial-inception-v3
title: Adversarial Inception v3
- local: models/advprop
title: AdvProp (EfficientNet)
- local: models/big-transfer
title: Big Transfer (BiT)
- local: models/csp-darknet
title: CSP-DarkNet
- local: models/csp-resnet
title: CSP-ResNet
- local: models/csp-resnext
title: CSP-ResNeXt
- local: models/densenet
title: DenseNet
- local: models/dla
title: Deep Layer Aggregation
- local: models/dpn
title: Dual Path Network (DPN)
- local: models/ecaresnet
title: ECA-ResNet
- local: models/efficientnet
title: EfficientNet
- local: models/efficientnet-pruned
title: EfficientNet (Knapsack Pruned)
- local: models/ensemble-adversarial
title: Ensemble Adversarial Inception ResNet v2
- local: models/ese-vovnet
title: ESE-VoVNet
- local: models/fbnet
title: FBNet
- local: models/gloun-inception-v3
title: (Gluon) Inception v3
- local: models/gloun-resnet
title: (Gluon) ResNet
- local: models/gloun-resnext
title: (Gluon) ResNeXt
- local: models/gloun-senet
title: (Gluon) SENet
- local: models/gloun-seresnext
title: (Gluon) SE-ResNeXt
- local: models/gloun-xception
title: (Gluon) Xception
- local: models/hrnet
title: HRNet
- local: models/ig-resnext
title: Instagram ResNeXt WSL
- local: models/inception-resnet-v2
title: Inception ResNet v2
- local: models/inception-v3
title: Inception v3
- local: models/inception-v4
title: Inception v4
- local: models/legacy-se-resnet
title: (Legacy) SE-ResNet
- local: models/legacy-se-resnext
title: (Legacy) SE-ResNeXt
- local: models/legacy-senet
title: (Legacy) SENet
- local: models/mixnet
title: MixNet
- local: models/mnasnet
title: MnasNet
- local: models/mobilenet-v2
title: MobileNet v2
- local: models/mobilenet-v3
title: MobileNet v3
- local: models/nasnet
title: NASNet
- local: models/noisy-student
title: Noisy Student (EfficientNet)
- local: models/pnasnet
title: PNASNet
- local: models/regnetx
title: RegNetX
- local: models/regnety
title: RegNetY
- local: models/res2net
title: Res2Net
- local: models/res2next
title: Res2NeXt
- local: models/resnest
title: ResNeSt
- local: models/resnet
title: ResNet
- local: models/resnet-d
title: ResNet-D
- local: models/resnext
title: ResNeXt
- local: models/rexnet
title: RexNet
- local: models/se-resnet
title: SE-ResNet
- local: models/selecsls
title: SelecSLS
- local: models/seresnext
title: SE-ResNeXt
- local: models/skresnet
title: SK-ResNet
- local: models/skresnext
title: SK-ResNeXt
- local: models/spnasnet
title: SPNASNet
- local: models/ssl-resnet
title: SSL ResNet
- local: models/swsl-resnet
title: SWSL ResNet
- local: models/swsl-resnext
title: SWSL ResNeXt
- local: models/tf-efficientnet
title: (Tensorflow) EfficientNet
- local: models/tf-efficientnet-condconv
title: (Tensorflow) EfficientNet CondConv
- local: models/tf-efficientnet-lite
title: (Tensorflow) EfficientNet Lite
- local: models/tf-inception-v3
title: (Tensorflow) Inception v3
- local: models/tf-mixnet
title: (Tensorflow) MixNet
- local: models/tf-mobilenet-v3
title: (Tensorflow) MobileNet v3
- local: models/tresnet
title: TResNet
- local: models/wide-resnet
title: Wide ResNet
- local: models/xception
title: Xception
title: Get started
- local: models/adversarial-inception-v3
title: Adversarial Inception v3
- local: models/advprop
title: AdvProp (EfficientNet)
- local: models/big-transfer
title: Big Transfer (BiT)
- local: models/csp-darknet
title: CSP-DarkNet
- local: models/csp-resnet
title: CSP-ResNet
- local: models/csp-resnext
title: CSP-ResNeXt
- local: models/densenet
title: DenseNet
- local: models/dla
title: Deep Layer Aggregation
- local: models/dpn
title: Dual Path Network (DPN)
- local: models/ecaresnet
title: ECA-ResNet
- local: models/efficientnet
title: EfficientNet
- local: models/efficientnet-pruned
title: EfficientNet (Knapsack Pruned)
- local: models/ensemble-adversarial
title: Ensemble Adversarial Inception ResNet v2
- local: models/ese-vovnet
title: ESE-VoVNet
- local: models/fbnet
title: FBNet
- local: models/gloun-inception-v3
title: (Gluon) Inception v3
- local: models/gloun-resnet
title: (Gluon) ResNet
- local: models/gloun-resnext
title: (Gluon) ResNeXt
- local: models/gloun-senet
title: (Gluon) SENet
- local: models/gloun-seresnext
title: (Gluon) SE-ResNeXt
- local: models/gloun-xception
title: (Gluon) Xception
- local: models/hrnet
title: HRNet
- local: models/ig-resnext
title: Instagram ResNeXt WSL
- local: models/inception-resnet-v2
title: Inception ResNet v2
- local: models/inception-v3
title: Inception v3
- local: models/inception-v4
title: Inception v4
- local: models/legacy-se-resnet
title: (Legacy) SE-ResNet
- local: models/legacy-se-resnext
title: (Legacy) SE-ResNeXt
- local: models/legacy-senet
title: (Legacy) SENet
- local: models/mixnet
title: MixNet
- local: models/mnasnet
title: MnasNet
- local: models/mobilenet-v2
title: MobileNet v2
- local: models/mobilenet-v3
title: MobileNet v3
- local: models/nasnet
title: NASNet
- local: models/noisy-student
title: Noisy Student (EfficientNet)
- local: models/pnasnet
title: PNASNet
- local: models/regnetx
title: RegNetX
- local: models/regnety
title: RegNetY
- local: models/res2net
title: Res2Net
- local: models/res2next
title: Res2NeXt
- local: models/resnest
title: ResNeSt
- local: models/resnet
title: ResNet
- local: models/resnet-d
title: ResNet-D
- local: models/resnext
title: ResNeXt
- local: models/rexnet
title: RexNet
- local: models/se-resnet
title: SE-ResNet
- local: models/selecsls
title: SelecSLS
- local: models/seresnext
title: SE-ResNeXt
- local: models/skresnet
title: SK-ResNet
- local: models/skresnext
title: SK-ResNeXt
- local: models/spnasnet
title: SPNASNet
- local: models/ssl-resnet
title: SSL ResNet
- local: models/swsl-resnet
title: SWSL ResNet
- local: models/swsl-resnext
title: SWSL ResNeXt
- local: models/tf-efficientnet
title: (Tensorflow) EfficientNet
- local: models/tf-efficientnet-condconv
title: (Tensorflow) EfficientNet CondConv
- local: models/tf-efficientnet-lite
title: (Tensorflow) EfficientNet Lite
- local: models/tf-inception-v3
title: (Tensorflow) Inception v3
- local: models/tf-mixnet
title: (Tensorflow) MixNet
- local: models/tf-mobilenet-v3
title: (Tensorflow) MobileNet v3
- local: models/tresnet
title: TResNet
- local: models/wide-resnet
title: Wide ResNet
- local: models/xception
title: Xception
title: Model Pages
isExpanded: false
- sections:
- local: reference/models
title: Models
- local: reference/data
title: Data
- local: reference/optimizers
title: Optimizers
- local: reference/schedulers
title: Learning Rate Schedulers
title: Reference

@ -1,418 +0,0 @@
# Archived Changes
### July 12, 2021
* Add XCiT models from [official facebook impl](https://github.com/facebookresearch/xcit). Contributed by [Alexander Soare](https://github.com/alexander-soare)
### July 5-9, 2021
* Add `efficientnetv2_rw_t` weights, a custom 'tiny' 13.6M param variant that is a bit better than (non NoisyStudent) B3 models. Both faster and better accuracy (at same or lower res)
* top-1 82.34 @ 288x288 and 82.54 @ 320x320
* Add [SAM pretrained](https://arxiv.org/abs/2106.01548) in1k weight for ViT B/16 (`vit_base_patch16_sam_224`) and B/32 (`vit_base_patch32_sam_224`) models.
* Add 'Aggregating Nested Transformer' (NesT) w/ weights converted from official [Flax impl](https://github.com/google-research/nested-transformer). Contributed by [Alexander Soare](https://github.com/alexander-soare).
* `jx_nest_base` - 83.534, `jx_nest_small` - 83.120, `jx_nest_tiny` - 81.426
### June 23, 2021
* Reproduce gMLP model training, `gmlp_s16_224` trained to 79.6 top-1, matching [paper](https://arxiv.org/abs/2105.08050). Hparams for this and other recent MLP training [here](https://gist.github.com/rwightman/d6c264a9001f9167e06c209f630b2cc6)
### June 20, 2021
* Release Vision Transformer 'AugReg' weights from [How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers](https://arxiv.org/abs/2106.10270)
* .npz weight loading support added, can load any of the 50K+ weights from the [AugReg series](https://console.cloud.google.com/storage/browser/vit_models/augreg)
* See [example notebook](https://colab.research.google.com/github/google-research/vision_transformer/blob/master/vit_jax_augreg.ipynb) from [official impl](https://github.com/google-research/vision_transformer/) for navigating the augreg weights
* Replaced all default weights w/ best AugReg variant (if possible). All AugReg 21k classifiers work.
* Highlights: `vit_large_patch16_384` (87.1 top-1), `vit_large_r50_s32_384` (86.2 top-1), `vit_base_patch16_384` (86.0 top-1)
* `vit_deit_*` renamed to just `deit_*`
* Remove my old small model, replace with DeiT compatible small w/ AugReg weights
* Add 1st training of my `gmixer_24_224` MLP /w GLU, 78.1 top-1 w/ 25M params.
* Add weights from official ResMLP release (https://github.com/facebookresearch/deit)
* Add `eca_nfnet_l2` weights from my 'lightweight' series. 84.7 top-1 at 384x384.
* Add distilled BiT 50x1 student and 152x2 Teacher weights from [Knowledge distillation: A good teacher is patient and consistent](https://arxiv.org/abs/2106.05237)
* NFNets and ResNetV2-BiT models work w/ Pytorch XLA now
* weight standardization uses F.batch_norm instead of std_mean (std_mean wasn't lowered)
* eps values adjusted, will be slight differences but should be quite close
* Improve test coverage and classifier interface of non-conv (vision transformer and mlp) models
* Cleanup a few classifier / flatten details for models w/ conv classifiers or early global pool
* Please report any regressions, this PR touched quite a few models.
### June 8, 2021
* Add first ResMLP weights, trained in PyTorch XLA on TPU-VM w/ my XLA branch. 24 block variant, 79.2 top-1.
* Add ResNet51-Q model w/ pretrained weights at 82.36 top-1.
* NFNet inspired block layout with quad layer stem and no maxpool
* Same param count (35.7M) and throughput as ResNetRS-50 but +1.5 top-1 @ 224x224 and +2.5 top-1 at 288x288
### May 25, 2021
* Add LeViT, Visformer, Convit (PR by Aman Arora), Twins (PR by paper authors) transformer models
* Cleanup input_size/img_size override handling and testing for all vision transformer models
* Add `efficientnetv2_rw_m` model and weights (started training before official code). 84.8 top-1, 53M params.
### May 14, 2021
* Add EfficientNet-V2 official model defs w/ ported weights from official [Tensorflow/Keras](https://github.com/google/automl/tree/master/efficientnetv2) impl.
* 1k trained variants: `tf_efficientnetv2_s/m/l`
* 21k trained variants: `tf_efficientnetv2_s/m/l_in21k`
* 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_in21ft1k`
* v2 models w/ v1 scaling: `tf_efficientnetv2_b0` through `b3`
* Rename my prev V2 guess `efficientnet_v2s` -> `efficientnetv2_rw_s`
* Some blank `efficientnetv2_*` models in-place for future native PyTorch training
### May 5, 2021
* Add MLP-Mixer models and port pretrained weights from [Google JAX impl](https://github.com/google-research/vision_transformer/tree/linen)
* Add CaiT models and pretrained weights from [FB](https://github.com/facebookresearch/deit)
* Add ResNet-RS models and weights from [TF](https://github.com/tensorflow/tpu/tree/master/models/official/resnet/resnet_rs). Thanks [Aman Arora](https://github.com/amaarora)
* Add CoaT models and weights. Thanks [Mohammed Rizin](https://github.com/morizin)
* Add new ImageNet-21k weights & finetuned weights for TResNet, MobileNet-V3, ViT models. Thanks [mrT](https://github.com/mrT23)
* Add GhostNet models and weights. Thanks [Kai Han](https://github.com/iamhankai)
* Update ByoaNet attention modles
* Improve SA module inits
* Hack together experimental stand-alone Swin based attn module and `swinnet`
* Consistent '26t' model defs for experiments.
* Add improved Efficientnet-V2S (prelim model def) weights. 83.8 top-1.
* WandB logging support
### April 13, 2021
* Add Swin Transformer models and weights from https://github.com/microsoft/Swin-Transformer
### April 12, 2021
* Add ECA-NFNet-L1 (slimmed down F1 w/ SiLU, 41M params) trained with this code. 84% top-1 @ 320x320. Trained at 256x256.
* Add EfficientNet-V2S model (unverified model definition) weights. 83.3 top-1 @ 288x288. Only trained single res 224. Working on progressive training.
* Add ByoaNet model definition (Bring-your-own-attention) w/ SelfAttention block and corresponding SA/SA-like modules and model defs
* Lambda Networks - https://arxiv.org/abs/2102.08602
* Bottleneck Transformers - https://arxiv.org/abs/2101.11605
* Halo Nets - https://arxiv.org/abs/2103.12731
* Adabelief optimizer contributed by Juntang Zhuang
### April 1, 2021
* Add snazzy `benchmark.py` script for bulk `timm` model benchmarking of train and/or inference
* Add Pooling-based Vision Transformer (PiT) models (from https://github.com/naver-ai/pit)
* Merged distilled variant into main for torchscript compatibility
* Some `timm` cleanup/style tweaks and weights have hub download support
* Cleanup Vision Transformer (ViT) models
* Merge distilled (DeiT) model into main so that torchscript can work
* Support updated weight init (defaults to old still) that closer matches original JAX impl (possibly better training from scratch)
* Separate hybrid model defs into different file and add several new model defs to fiddle with, support patch_size != 1 for hybrids
* Fix fine-tuning num_class changes (PiT and ViT) and pos_embed resizing (Vit) with distilled variants
* nn.Sequential for block stack (does not break downstream compat)
* TnT (Transformer-in-Transformer) models contributed by author (from https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT)
* Add RegNetY-160 weights from DeiT teacher model
* Add new NFNet-L0 w/ SE attn (rename `nfnet_l0b`->`nfnet_l0`) weights 82.75 top-1 @ 288x288
* Some fixes/improvements for TFDS dataset wrapper
### March 7, 2021
* First 0.4.x PyPi release w/ NFNets (& related), ByoB (GPU-Efficient, RepVGG, etc).
* Change feature extraction for pre-activation nets (NFNets, ResNetV2) to return features before activation.
### Feb 18, 2021
* Add pretrained weights and model variants for NFNet-F* models from [DeepMind Haiku impl](https://github.com/deepmind/deepmind-research/tree/master/nfnets).
* Models are prefixed with `dm_`. They require SAME padding conv, skipinit enabled, and activation gains applied in act fn.
* These models are big, expect to run out of GPU memory. With the GELU activiation + other options, they are roughly 1/2 the inference speed of my SiLU PyTorch optimized `s` variants.
* Original model results are based on pre-processing that is not the same as all other models so you'll see different results in the results csv (once updated).
* Matching the original pre-processing as closely as possible I get these results:
* `dm_nfnet_f6` - 86.352
* `dm_nfnet_f5` - 86.100
* `dm_nfnet_f4` - 85.834
* `dm_nfnet_f3` - 85.676
* `dm_nfnet_f2` - 85.178
* `dm_nfnet_f1` - 84.696
* `dm_nfnet_f0` - 83.464
### Feb 16, 2021
* Add Adaptive Gradient Clipping (AGC) as per https://arxiv.org/abs/2102.06171. Integrated w/ PyTorch gradient clipping via mode arg that defaults to prev 'norm' mode. For backward arg compat, clip-grad arg must be specified to enable when using train.py.
* AGC w/ default clipping factor `--clip-grad .01 --clip-mode agc`
* PyTorch global norm of 1.0 (old behaviour, always norm), `--clip-grad 1.0`
* PyTorch value clipping of 10, `--clip-grad 10. --clip-mode value`
* AGC performance is definitely sensitive to the clipping factor. More experimentation needed to determine good values for smaller batch sizes and optimizers besides those in paper. So far I've found .001-.005 is necessary for stable RMSProp training w/ NFNet/NF-ResNet.
### Feb 12, 2021
* Update Normalization-Free nets to include new NFNet-F (https://arxiv.org/abs/2102.06171) model defs
### Feb 10, 2021
* More model archs, incl a flexible ByobNet backbone ('Bring-your-own-blocks')
* GPU-Efficient-Networks (https://github.com/idstcv/GPU-Efficient-Networks), impl in `byobnet.py`
* RepVGG (https://github.com/DingXiaoH/RepVGG), impl in `byobnet.py`
* classic VGG (from torchvision, impl in `vgg`)
* Refinements to normalizer layer arg handling and normalizer+act layer handling in some models
* Default AMP mode changed to native PyTorch AMP instead of APEX. Issues not being fixed with APEX. Native works with `--channels-last` and `--torchscript` model training, APEX does not.
* Fix a few bugs introduced since last pypi release
### Feb 8, 2021
* Add several ResNet weights with ECA attention. 26t & 50t trained @ 256, test @ 320. 269d train @ 256, fine-tune @320, test @ 352.
* `ecaresnet26t` - 79.88 top-1 @ 320x320, 79.08 @ 256x256
* `ecaresnet50t` - 82.35 top-1 @ 320x320, 81.52 @ 256x256
* `ecaresnet269d` - 84.93 top-1 @ 352x352, 84.87 @ 320x320
* Remove separate tiered (`t`) vs tiered_narrow (`tn`) ResNet model defs, all `tn` changed to `t` and `t` models removed (`seresnext26t_32x4d` only model w/ weights that was removed).
* Support model default_cfgs with separate train vs test resolution `test_input_size` and remove extra `_320` suffix ResNet model defs that were just for test.
### Jan 30, 2021
* Add initial "Normalization Free" NF-RegNet-B* and NF-ResNet model definitions based on [paper](https://arxiv.org/abs/2101.08692)
### Jan 25, 2021
* Add ResNetV2 Big Transfer (BiT) models w/ ImageNet-1k and 21k weights from https://github.com/google-research/big_transfer
* Add official R50+ViT-B/16 hybrid models + weights from https://github.com/google-research/vision_transformer
* ImageNet-21k ViT weights are added w/ model defs and representation layer (pre logits) support
* NOTE: ImageNet-21k classifier heads were zero'd in original weights, they are only useful for transfer learning
* Add model defs and weights for DeiT Vision Transformer models from https://github.com/facebookresearch/deit
* Refactor dataset classes into ImageDataset/IterableImageDataset + dataset specific parser classes
* Add Tensorflow-Datasets (TFDS) wrapper to allow use of TFDS image classification sets with train script
* Ex: `train.py /data/tfds --dataset tfds/oxford_iiit_pet --val-split test --model resnet50 -b 256 --amp --num-classes 37 --opt adamw --lr 3e-4 --weight-decay .001 --pretrained -j 2`
* Add improved .tar dataset parser that reads images from .tar, folder of .tar files, or .tar within .tar
* Run validation on full ImageNet-21k directly from tar w/ BiT model: `validate.py /data/fall11_whole.tar --model resnetv2_50x1_bitm_in21k --amp`
* Models in this update should be stable w/ possible exception of ViT/BiT, possibility of some regressions with train/val scripts and dataset handling
### Jan 3, 2021
* Add SE-ResNet-152D weights
* 256x256 val, 0.94 crop top-1 - 83.75
* 320x320 val, 1.0 crop - 84.36
* Update results files
### Dec 18, 2020
* Add ResNet-101D, ResNet-152D, and ResNet-200D weights trained @ 256x256
* 256x256 val, 0.94 crop (top-1) - 101D (82.33), 152D (83.08), 200D (83.25)
* 288x288 val, 1.0 crop - 101D (82.64), 152D (83.48), 200D (83.76)
* 320x320 val, 1.0 crop - 101D (83.00), 152D (83.66), 200D (84.01)
### Dec 7, 2020
* Simplify EMA module (ModelEmaV2), compatible with fully torchscripted models
* Misc fixes for SiLU ONNX export, default_cfg missing from Feature extraction models, Linear layer w/ AMP + torchscript
* PyPi release @ 0.3.2 (needed by EfficientDet)
### Oct 30, 2020
* Test with PyTorch 1.7 and fix a small top-n metric view vs reshape issue.
* Convert newly added 224x224 Vision Transformer weights from official JAX repo. 81.8 top-1 for B/16, 83.1 L/16.
* Support PyTorch 1.7 optimized, native SiLU (aka Swish) activation. Add mapping to 'silu' name, custom swish will eventually be deprecated.
* Fix regression for loading pretrained classifier via direct model entrypoint functions. Didn't impact create_model() factory usage.
* PyPi release @ 0.3.0 version!
### Oct 26, 2020
* Update Vision Transformer models to be compatible with official code release at https://github.com/google-research/vision_transformer
* Add Vision Transformer weights (ImageNet-21k pretrain) for 384x384 base and large models converted from official jax impl
* ViT-B/16 - 84.2
* ViT-B/32 - 81.7
* ViT-L/16 - 85.2
* ViT-L/32 - 81.5
### Oct 21, 2020
* Weights added for Vision Transformer (ViT) models. 77.86 top-1 for 'small' and 79.35 for 'base'. Thanks to [Christof](https://www.kaggle.com/christofhenkel) for training the base model w/ lots of GPUs.
### Oct 13, 2020
* Initial impl of Vision Transformer models. Both patch and hybrid (CNN backbone) variants. Currently trying to train...
* Adafactor and AdaHessian (FP32 only, no AMP) optimizers
* EdgeTPU-M (`efficientnet_em`) model trained in PyTorch, 79.3 top-1
* Pip release, doc updates pending a few more changes...
### Sept 18, 2020
* New ResNet 'D' weights. 72.7 (top-1) ResNet-18-D, 77.1 ResNet-34-D, 80.5 ResNet-50-D
* Added a few untrained defs for other ResNet models (66D, 101D, 152D, 200/200D)
### Sept 3, 2020
* New weights
* Wide-ResNet50 - 81.5 top-1 (vs 78.5 torchvision)
* SEResNeXt50-32x4d - 81.3 top-1 (vs 79.1 cadene)
* Support for native Torch AMP and channels_last memory format added to train/validate scripts (`--channels-last`, `--native-amp` vs `--apex-amp`)
* Models tested with channels_last on latest NGC 20.08 container. AdaptiveAvgPool in attn layers changed to mean((2,3)) to work around bug with NHWC kernel.
### Aug 12, 2020
* New/updated weights from training experiments
* EfficientNet-B3 - 82.1 top-1 (vs 81.6 for official with AA and 81.9 for AdvProp)
* RegNetY-3.2GF - 82.0 top-1 (78.9 from official ver)
* CSPResNet50 - 79.6 top-1 (76.6 from official ver)
* Add CutMix integrated w/ Mixup. See [pull request](https://github.com/rwightman/pytorch-image-models/pull/218) for some usage examples
* Some fixes for using pretrained weights with `in_chans` != 3 on several models.
### Aug 5, 2020
Universal feature extraction, new models, new weights, new test sets.
* All models support the `features_only=True` argument for `create_model` call to return a network that extracts feature maps from the deepest layer at each stride.
* New models
* CSPResNet, CSPResNeXt, CSPDarkNet, DarkNet
* ReXNet
* (Modified Aligned) Xception41/65/71 (a proper port of TF models)
* New trained weights
* SEResNet50 - 80.3 top-1
* CSPDarkNet53 - 80.1 top-1
* CSPResNeXt50 - 80.0 top-1
* DPN68b - 79.2 top-1
* EfficientNet-Lite0 (non-TF ver) - 75.5 (submitted by [@hal-314](https://github.com/hal-314))
* Add 'real' labels for ImageNet and ImageNet-Renditions test set, see [`results/README.md`](results/README.md)
* Test set ranking/top-n diff script by [@KushajveerSingh](https://github.com/KushajveerSingh)
* Train script and loader/transform tweaks to punch through more aug arguments
* README and documentation overhaul. See initial (WIP) documentation at https://rwightman.github.io/pytorch-image-models/
* adamp and sgdp optimizers added by [@hellbell](https://github.com/hellbell)
### June 11, 2020
Bunch of changes:
* DenseNet models updated with memory efficient addition from torchvision (fixed a bug), blur pooling and deep stem additions
* VoVNet V1 and V2 models added, 39 V2 variant (ese_vovnet_39b) trained to 79.3 top-1
* Activation factory added along with new activations:
* select act at model creation time for more flexibility in using activations compatible with scripting or tracing (ONNX export)
* hard_mish (experimental) added with memory-efficient grad, along with ME hard_swish
* context mgr for setting exportable/scriptable/no_jit states
* Norm + Activation combo layers added with initial trial support in DenseNet and VoVNet along with impl of EvoNorm and InplaceAbn wrapper that fit the interface
* Torchscript works for all but two of the model types as long as using Pytorch 1.5+, tests added for this
* Some import cleanup and classifier reset changes, all models will have classifier reset to nn.Identity on reset_classifer(0) call
* Prep for 0.1.28 pip release
### May 12, 2020
* Add ResNeSt models (code adapted from https://github.com/zhanghang1989/ResNeSt, paper https://arxiv.org/abs/2004.08955))
### May 3, 2020
* Pruned EfficientNet B1, B2, and B3 (https://arxiv.org/abs/2002.08258) contributed by [Yonathan Aflalo](https://github.com/yoniaflalo)
### May 1, 2020
* Merged a number of execellent contributions in the ResNet model family over the past month
* BlurPool2D and resnetblur models initiated by [Chris Ha](https://github.com/VRandme), I trained resnetblur50 to 79.3.
* TResNet models and SpaceToDepth, AntiAliasDownsampleLayer layers by [mrT23](https://github.com/mrT23)
* ecaresnet (50d, 101d, light) models and two pruned variants using pruning as per (https://arxiv.org/abs/2002.08258) by [Yonathan Aflalo](https://github.com/yoniaflalo)
* 200 pretrained models in total now with updated results csv in results folder
### April 5, 2020
* Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
* 3.5M param MobileNet-V2 100 @ 73%
* 4.5M param MobileNet-V2 110d @ 75%
* 6.1M param MobileNet-V2 140 @ 76.5%
* 5.8M param MobileNet-V2 120d @ 77.3%
### March 18, 2020
* Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
* Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams)
### April 5, 2020
* Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
* 3.5M param MobileNet-V2 100 @ 73%
* 4.5M param MobileNet-V2 110d @ 75%
* 6.1M param MobileNet-V2 140 @ 76.5%
* 5.8M param MobileNet-V2 120d @ 77.3%
### March 18, 2020
* Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
* Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams)
### Feb 29, 2020
* New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1
* IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models
* overall results similar to a bit better training from scratch on a few smaller models tried
* performance early in training seems consistently improved but less difference by end
* set `fix_group_fanout=False` in `_init_weight_goog` fn if you need to reproducte past behaviour
* Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training
### Feb 18, 2020
* Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268):
* Move layer/module impl into `layers` subfolder/module of `models` and organize in a more granular fashion
* ResNet downsample paths now properly support dilation (output stride != 32) for avg_pool ('D' variant) and 3x3 (SENets) networks
* Add Selective Kernel Nets on top of ResNet base, pretrained weights
* skresnet18 - 73% top-1
* skresnet34 - 76.9% top-1
* skresnext50_32x4d (equiv to SKNet50) - 80.2% top-1
* ECA and CECA (circular padding) attention layer contributed by [Chris Ha](https://github.com/VRandme)
* CBAM attention experiment (not the best results so far, may remove)
* Attention factory to allow dynamically selecting one of SE, ECA, CBAM in the `.se` position for all ResNets
* Add DropBlock and DropPath (formerly DropConnect for EfficientNet/MobileNetv3) support to all ResNet variants
* Full dataset results updated that incl NoisyStudent weights and 2 of the 3 SK weights
### Feb 12, 2020
* Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
### Feb 6, 2020
* Add RandAugment trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams)
### Feb 1/2, 2020
* Port new EfficientNet-B8 (RandAugment) weights, these are different than the B8 AdvProp, different input normalization.
* Update results csv files on all models for ImageNet validation and three other test sets
* Push PyPi package update
### Jan 31, 2020
* Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below.
### Jan 11/12, 2020
* Master may be a bit unstable wrt to training, these changes have been tested but not all combos
* Implementations of AugMix added to existing RA and AA. Including numerous supporting pieces like JSD loss (Jensen-Shannon divergence + CE), and AugMixDataset
* SplitBatchNorm adaptation layer added for implementing Auxiliary BN as per AdvProp paper
* ResNet-50 AugMix trained model w/ 79% top-1 added
* `seresnext26tn_32x4d` - 77.99 top-1, 93.75 top-5 added to tiered experiment, higher img/s than 't' and 'd'
### Jan 3, 2020
* Add RandAugment trained EfficientNet-B0 weight with 77.7 top-1. Trained by [Michael Klachko](https://github.com/michaelklachko) with this code and recent hparams (see Training section)
* Add `avg_checkpoints.py` script for post training weight averaging and update all scripts with header docstrings and shebangs.
### Dec 30, 2019
* Merge [Dushyant Mehta's](https://github.com/mehtadushy) PR for SelecSLS (Selective Short and Long Range Skip Connections) networks. Good GPU memory consumption and throughput. Original: https://github.com/mehtadushy/SelecSLS-Pytorch
### Dec 28, 2019
* Add new model weights and training hparams (see Training Hparams section)
* `efficientnet_b3` - 81.5 top-1, 95.7 top-5 at default res/crop, 81.9, 95.8 at 320x320 1.0 crop-pct
* trained with RandAugment, ended up with an interesting but less than perfect result (see training section)
* `seresnext26d_32x4d`- 77.6 top-1, 93.6 top-5
* deep stem (32, 32, 64), avgpool downsample
* stem/dowsample from bag-of-tricks paper
* `seresnext26t_32x4d`- 78.0 top-1, 93.7 top-5
* deep tiered stem (24, 48, 64), avgpool downsample (a modified 'D' variant)
* stem sizing mods from Jeremy Howard and fastai devs discussing ResNet architecture experiments
### Dec 23, 2019
* Add RandAugment trained MixNet-XL weights with 80.48 top-1.
* `--dist-bn` argument added to train.py, will distribute BN stats between nodes after each train epoch, before eval
### Dec 4, 2019
* Added weights from the first training from scratch of an EfficientNet (B2) with my new RandAugment implementation. Much better than my previous B2 and very close to the official AdvProp ones (80.4 top-1, 95.08 top-5).
### Nov 29, 2019
* Brought EfficientNet and MobileNetV3 up to date with my https://github.com/rwightman/gen-efficientnet-pytorch code. Torchscript and ONNX export compat excluded.
* AdvProp weights added
* Official TF MobileNetv3 weights added
* EfficientNet and MobileNetV3 hook based 'feature extraction' classes added. Will serve as basis for using models as backbones in obj detection/segmentation tasks. Lots more to be done here...
* HRNet classification models and weights added from https://github.com/HRNet/HRNet-Image-Classification
* Consistency in global pooling, `reset_classifer`, and `forward_features` across models
* `forward_features` always returns unpooled feature maps now
* Reasonable chance I broke something... let me know
### Nov 22, 2019
* Add ImageNet training RandAugment implementation alongside AutoAugment. PyTorch Transform compatible format, using PIL. Currently training two EfficientNet models from scratch with promising results... will update.
* `drop-connect` cmd line arg finally added to `train.py`, no need to hack model fns. Works for efficientnet/mobilenetv3 based models, ignored otherwise.

@ -1,187 +0,0 @@
# Recent Changes
### July 27, 2022
* All runtime benchmark and validation result csv files are up-to-date!
* A few more weights & model defs added:
* `darknetaa53` - 79.8 @ 256, 80.5 @ 288
* `convnext_nano` - 80.8 @ 224, 81.5 @ 288
* `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
* `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
* `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
* `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
* `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)
### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
* EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
* MobileViT-V2 from (https://github.com/apple/ml-cvnets)
* DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
* Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
* `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
* More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
* Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
* `resnet10t` - 66.5 @ 176, 68.3 @ 224
* `resnet14t` - 71.3 @ 176, 72.3 @ 224
* `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
* `darknet53` - 80.0 @ 256, 80.5 @ 288
* `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
* `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
* `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
* `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
* `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
* `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
* `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
* `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases.
* a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges.
* previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...
### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
* `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
* `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
* `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
* `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)
### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
* `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
* `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
* `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).
### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
* `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
* `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288
### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.
### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
* `regnety_040` - 82.3 @ 224, 82.96 @ 288
* `regnety_064` - 83.0 @ 224, 83.65 @ 288
* `regnety_080` - 83.17 @ 224, 83.86 @ 288
* `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act)
* `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act)
* `regnetz_040` - 83.67 @ 256, 84.25 @ 320
* `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
* `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
* `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
* `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
* `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
* `xception41p` - 82 @ 299 (timm pre-act)
* `xception65` - 83.17 @ 299
* `xception65p` - 83.14 @ 299 (timm pre-act)
* `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
* `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
* `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`
### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioners Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
* The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
* `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.
### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
* `mnasnet_small` - 65.6 top-1
* `mobilenetv2_050` - 65.9
* `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
* `semnasnet_075` - 73
* `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture
### Nov 22, 2021
* A number of updated weights anew new model defs
* `eca_halonext26ts` - 79.5 @ 256
* `resnet50_gn` (new) - 80.1 @ 224, 81.3 @ 288
* `resnet50` - 80.7 @ 224, 80.9 @ 288 (trained at 176, not replacing current a1 weights as default since these don't scale as well to higher res, [weights](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth))
* `resnext50_32x4d` - 81.1 @ 224, 82.0 @ 288
* `sebotnet33ts_256` (new) - 81.2 @ 224
* `lamhalobotnet50ts_256` - 81.5 @ 256
* `halonet50ts` - 81.7 @ 256
* `halo2botnet50ts_256` - 82.0 @ 256
* `resnet101` - 82.0 @ 224, 82.8 @ 288
* `resnetv2_101` (new) - 82.1 @ 224, 83.0 @ 288
* `resnet152` - 82.8 @ 224, 83.5 @ 288
* `regnetz_d8` (new) - 83.5 @ 256, 84.0 @ 320
* `regnetz_e8` (new) - 84.5 @ 256, 85.0 @ 320
* `vit_base_patch8_224` (85.8 top-1) & `in21k` variant weights added thanks [Martins Bruveris](https://github.com/martinsbruveris)
* Groundwork in for FX feature extraction thanks to [Alexander Soare](https://github.com/alexander-soare)
* models updated for tracing compatibility (almost full support with some distlled transformer exceptions)
### Oct 19, 2021
* ResNet strikes back (https://arxiv.org/abs/2110.00476) weights added, plus any extra training components used. Model weights and some more details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights)
* BCE loss and Repeated Augmentation support for RSB paper
* 4 series of ResNet based attention model experiments being added (implemented across byobnet.py/byoanet.py). These include all sorts of attention, from channel attn like SE, ECA to 2D QKV self-attention layers such as Halo, Bottlneck, Lambda. Details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* Working implementations of the following 2D self-attention modules (likely to be differences from paper or eventual official impl):
* Halo (https://arxiv.org/abs/2103.12731)
* Bottleneck Transformer (https://arxiv.org/abs/2101.11605)
* LambdaNetworks (https://arxiv.org/abs/2102.08602)
* A RegNetZ series of models with some attention experiments (being added to). These do not follow the paper (https://arxiv.org/abs/2103.06877) in any way other than block architecture, details of official models are not available. See more here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* ConvMixer (https://openreview.net/forum?id=TVHS5Y4dNvM), CrossVit (https://arxiv.org/abs/2103.14899), and BeiT (https://arxiv.org/abs/2106.08254) architectures + weights added
* freeze/unfreeze helpers by [Alexander Soare](https://github.com/alexander-soare)
### Aug 18, 2021
* Optimizer bonanza!
* Add LAMB and LARS optimizers, incl trust ratio clipping options. Tweaked to work properly in PyTorch XLA (tested on TPUs w/ `timm bits` [branch](https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu/timm/bits))
* Add MADGRAD from FB research w/ a few tweaks (decoupled decay option, step handling that works with PyTorch XLA)
* Some cleanup on all optimizers and factory. No more `.data`, a bit more consistency, unit tests for all!
* SGDP and AdamP still won't work with PyTorch XLA but others should (have yet to test Adabelief, Adafactor, Adahessian myself).
* EfficientNet-V2 XL TF ported weights added, but they don't validate well in PyTorch (L is better). The pre-processing for the V2 TF training is a bit diff and the fine-tuned 21k -> 1k weights are very sensitive and less robust than the 1k weights.
* Added PyTorch trained EfficientNet-V2 'Tiny' w/ GlobalContext attn weights. Only .1-.2 top-1 better than the SE so more of a curiosity for those interested.

@ -0,0 +1,54 @@
# Sharing and Loading Models From the Hugging Face Hub
The `timm` library has a built-in integration with the Hugging Face Hub, making it easy to share and load models from the 🤗 Hub.
In this short guide, we'll see how to:
1. Share a `timm` model on the Hub
2. How to load that model back from the Hub
## Authenticating
First, you'll need to make sure you have the `huggingface_hub` package installed.
```bash
pip install huggingface_hub
```
Then, you'll need to authenticate yourself. You can do this by running the following command:
```bash
huggingface-cli login
```
Or, if you're using a notebook, you can use the `notebook_login` helper:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Sharing a Model
```py
>>> import timm
>>> model = timm.create_model('resnet18', pretrained=True, num_classes=4)
```
Here is where you would normally train or fine-tune the model. We'll skip that for the sake of this tutorial.
Let's pretend we've now fine-tuned the model. The next step would be to push it to the Hub! We can do this with the `timm.models.hub.push_to_hf_hub` function.
```py
>>> model_cfg = dict(labels=['a', 'b', 'c', 'd'])
>>> timm.models.hub.push_to_hf_hub(model, 'resnet18-random', model_config=model_cfg)
```
Running the above would push the model to `<your-username>/resnet18-random` on the Hub. You can now share this model with your friends, or use it in your own code!
## Loading a Model
Loading a model from the Hub is as simple as calling `timm.create_model` with the `pretrained` argument set to the name of the model you want to load. In this case, we'll use [`nateraw/resnet18-random`](https://huggingface.co/nateraw/resnet18-random), which is the model we just pushed to the Hub.
```py
>>> model_reloaded = timm.create_model('hf_hub:nateraw/resnet18-random', pretrained=True)
```

@ -1,89 +1,22 @@
# Getting Started
# timm
## Welcome
<img class="float-left !m-0 !border-0 !dark:border-0 !shadow-none !max-w-lg w-[150px]" src="https://huggingface.co/front/thumbnails/docs/timm.png"/>
Welcome to the `timm` documentation, a lean set of docs that covers the basics of `timm`.
`timm` is a library containing SOTA computer vision models, layers, utilities, optimizers, schedulers, data-loaders, augmentations, and training/evaluation scripts.
For a more comprehensive set of docs (currently under development), please visit [timmdocs](http://timm.fast.ai) by [Aman Arora](https://github.com/amaarora).
It comes packaged with >700 pretrained models, and is designed to be flexible and easy to use.
## Install
Read the [quick start guide](quickstart) to get up and running with the `timm` library. You will learn how to load, discover, and use pretrained models included in the library.
The library can be installed with pip:
```
pip install timm
```
I update the PyPi (pip) packages when I'm confident there are no significant model regressions from previous releases. If you want to pip install the bleeding edge from GitHub, use:
```
pip install git+https://github.com/rwightman/pytorch-image-models.git
```
### Conda Environment
<Tip>
- All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically 3.7, 3.8, 3.9, 3.10
- Little to no care has been taken to be Python 2.x friendly and will not support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment.
- PyTorch versions 1.9, 1.10, 1.11 have been tested with the latest versions of this code.
</Tip>
I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
```bash
conda create -n torch-env
conda activate torch-env
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
conda install pyyaml
```
## Load a Pretrained Model
Pretrained models can be loaded using `timm.create_model`
```py
>>> import timm
>>> m = timm.create_model('mobilenetv3_large_100', pretrained=True)
>>> m.eval()
```
## List Models with Pretrained Weights
```py
>>> import timm
>>> from pprint import pprint
>>> model_names = timm.list_models(pretrained=True)
>>> pprint(model_names)
[
'adv_inception_v3',
'cspdarknet53',
'cspresnext50',
'densenet121',
'densenet161',
'densenet169',
'densenet201',
'densenetblur121d',
'dla34',
'dla46_c',
]
```
## List Model Architectures by Wildcard
```py
>>> import timm
>>> from pprint import pprint
>>> model_names = timm.list_models('*resne*t*')
>>> pprint(model_names)
[
'cspresnet50',
'cspresnet50d',
'cspresnet50w',
'cspresnext50',
...
]
```
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./feature_extraction"
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
<p class="text-gray-700">Learn the basics and become familiar with timm. Start here if you are using timm for the first time!</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./reference/models"
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
<p class="text-gray-700">Technical descriptions of how timm classes and methods work.</p>
</a>
</div>
</div>

@ -0,0 +1,74 @@
# Installation
Before you start, you'll need to setup your environment and install the appropriate packages. `timm` is tested on **Python 3+**.
## Virtual Environment
You should install `timm` in a [virtual environment](https://docs.python.org/3/library/venv.html) to keep things tidy and avoid dependency conflicts.
1. Create and navigate to your project directory:
```bash
mkdir ~/my-project
cd ~/my-project
```
2. Start a virtual environment inside your directory:
```bash
python -m venv .env
```
3. Activate and deactivate the virtual environment with the following commands:
```bash
# Activate the virtual environment
source .env/bin/activate
# Deactivate the virtual environment
source .env/bin/deactivate
```
`
Once you've created your virtual environment, you can install `timm` in it.
## Using pip
The most straightforward way to install `timm` is with pip:
```bash
pip install timm
```
Alternatively, you can install `timm` from GitHub directly to get the latest, bleeding-edge version:
```bash
pip install git+https://github.com/rwightman/pytorch-image-models.git
```
Run the following command to check if `timm` has been properly installed:
```bash
python -c "from timm import list_models; print(list_models(pretrained=True)[:5])"
```
This command lists the first five pretrained models available in `timm` (which are sorted alphebetically). You should see the following output:
```python
['adv_inception_v3', 'bat_resnext26ts', 'beit_base_patch16_224', 'beit_base_patch16_224_in22k', 'beit_base_patch16_384']
```
## From Source
Building `timm` from source lets you make changes to the code base. To install from the source, clone the repository and install with the following commands:
```bash
git clone https://github.com/rwightman/timm.git
cd timm
pip install -e .
```
Again, you can check if `timm` was properly installed with the following command:
```bash
python -c "from timm import list_models; print(list_models(pretrained=True)[:5])"
```

@ -1,5 +0,0 @@
# Available Models
`timm` comes bundled with a number of model architectures and corresponding pretrained models.
In these pages, you will find the models available in the `timm` library, as well as information on how to use them.

@ -0,0 +1,228 @@
# Quickstart
This quickstart is intended for developers who are ready to dive into the code and see an example of how to integrate `timm` into their model training workflow.
First, you'll need to install `timm`. For more information on installation, see [Installation](installation).
```bash
pip install timm
```
## Load a Pretrained Model
Pretrained models can be loaded using [`create_model`].
Here, we load the pretrained `mobilenetv3_large_100` model.
```py
>>> import timm
>>> m = timm.create_model('mobilenetv3_large_100', pretrained=True)
>>> m.eval()
```
<Tip>
Note: The returned PyTorch model is set to train mode by default, so you must call .eval() on it if you plan to use it for inference.
</Tip>
## List Models with Pretrained Weights
To list models packaged with `timm`, you can use [`list_models`]. If you specify `pretrained=True`, this function will only return model names that have associated pretrained weights available.
```py
>>> import timm
>>> from pprint import pprint
>>> model_names = timm.list_models(pretrained=True)
>>> pprint(model_names)
[
'adv_inception_v3',
'cspdarknet53',
'cspresnext50',
'densenet121',
'densenet161',
'densenet169',
'densenet201',
'densenetblur121d',
'dla34',
'dla46_c',
]
```
You can also list models with a specific pattern in their name.
```py
>>> import timm
>>> from pprint import pprint
>>> model_names = timm.list_models('*resne*t*')
>>> pprint(model_names)
[
'cspresnet50',
'cspresnet50d',
'cspresnet50w',
'cspresnext50',
...
]
```
## Fine-Tune a Pretrained Model
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To fine-tune on your own dataset, you have to write a PyTorch training loop or adapt `timm`'s [training script](training_script) to use your dataset.
## Use a Pretrained Model for Feature Extraction
Without modifying the network, one can call model.forward_features(input) on any model instead of the usual model(input). This will bypass the head classifier and global pooling for networks.
For a more in depth guide to using `timm` for feature extraction, see [Feature Extraction](feature_extraction).
```py
>>> import timm
>>> import torch
>>> x = torch.randn(1, 3, 224, 224)
>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True)
>>> features = model.forward_features(x)
>>> print(features.shape)
torch.Size([1, 960, 7, 7])
```
## Image Augmentation
To transform images into valid inputs for a model, you can use [`timm.data.create_transform`], providing the desired `input_size` that the model expects.
This will return a generic transform that uses reasonable defaults.
```py
>>> timm.data.create_transform((3, 224, 224))
Compose(
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
```
Pretrained models have specific transforms that were applied to images fed into them while training. If you use the wrong transform on your image, the model won't understand what it's seeing!
To figure out which transformations were used for a given pretrained model, we can start by taking a look at its `pretrained_cfg`
```py
>>> model.pretrained_cfg
{'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth',
'num_classes': 1000,
'input_size': (3, 224, 224),
'pool_size': (7, 7),
'crop_pct': 0.875,
'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406),
'std': (0.229, 0.224, 0.225),
'first_conv': 'conv_stem',
'classifier': 'classifier',
'architecture': 'mobilenetv3_large_100'}
```
We can then resolve only the data related configuration by using [`timm.data.resolve_data_config`].
```py
>>> timm.data.resolve_data_config(model.pretrained_cfg)
{'input_size': (3, 224, 224),
'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406),
'std': (0.229, 0.224, 0.225),
'crop_pct': 0.875}
```
We can pass this data config to [`timm.data.create_transform`] to initialize the model's associated transform.
```py
>>> data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
>>> transform = timm.data.create_transform(**data_cfg)
>>> transform
Compose(
Resize(size=256, interpolation=bicubic, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
```
<Tip>
Note: Here, the pretrained model's config happens to be the same as the generic config we made earlier. This is not always the case. So, it's safer to use the data config to create the transform as we did here instead of using the generic transform.
</Tip>
## Using Pretrained Models for Inference
Here, we will put together the above sections and use a pretrained model for inference.
First we'll need an image to do inference on. Here we load a picture of a leaf from the web:
```py
>>> import requests
>>> from PIL import Image
>>> from io import BytesIO
>>> url = 'https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image
```
Here's the image we loaded:
<img src="https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg" alt="An Image from a link" width="300"/>
Now, we'll create our model and transforms again. This time, we make sure to set our model in evaluation mode.
```py
>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True).eval()
>>> transform = timm.data.create_transform(
**timm.data.resolve_data_config(model.pretrained_cfg)
)
```
We can prepare this image for the model by passing it to the transform.
```py
>>> image_tensor = transform(image)
>>> image_tensor.shape
torch.Size([3, 224, 224])
```
Now we can pass that image to the model to get the predictions. We use `unsqueeze(0)` in this case, as the model is expecting a batch dimension.
```py
>>> output = model(image_tensor.unsqueeze(0))
>>> output.shape
torch.Size([1, 1000])
```
To get the predicted probabilities, we apply softmax to the output. This leaves us with a tensor of shape `(num_classes,)`.
```py
>>> probabilities = torch.nn.functional.softmax(output[0], dim=0)
>>> probabilities.shape
torch.Size([1000])
```
Now we'll find the top 5 predicted class indexes and values using `torch.topk`.
```py
>>> values, indices = torch.topk(probabilities, 5)
>>> indices
tensor([162, 166, 161, 164, 167])
```
If we check the imagenet labels for the top index, we can see what the model predicted...
```py
>>> IMAGENET_1k_URL = 'https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt'
>>> IMAGENET_1k_LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n')
>>> [{'label': IMAGENET_1k_LABELS[idx], 'value': val.item()} for val, idx in zip(values, indices)]
[{'label': 'beagle', 'value': 0.8486220836639404},
{'label': 'Walker_hound, Walker_foxhound', 'value': 0.03753996267914772},
{'label': 'basset, basset_hound', 'value': 0.024628572165966034},
{'label': 'bluetick', 'value': 0.010317106731235981},
{'label': 'English_foxhound', 'value': 0.006958036217838526}]
```

@ -0,0 +1,9 @@
# Data
[[autodoc]] timm.data.create_dataset
[[autodoc]] timm.data.create_loader
[[autodoc]] timm.data.create_transform
[[autodoc]] timm.data.resolve_data_config

@ -0,0 +1,5 @@
# Models
[[autodoc]] timm.create_model
[[autodoc]] timm.list_models

@ -0,0 +1,27 @@
# Optimization
This page contains the API reference documentation for learning rate optimizers included in `timm`.
## Optimizers
### Factory functions
[[autodoc]] timm.optim.optim_factory.create_optimizer
[[autodoc]] timm.optim.optim_factory.create_optimizer_v2
### Optimizer Classes
[[autodoc]] timm.optim.adabelief.AdaBelief
[[autodoc]] timm.optim.adafactor.Adafactor
[[autodoc]] timm.optim.adahessian.Adahessian
[[autodoc]] timm.optim.adamp.AdamP
[[autodoc]] timm.optim.adamw.AdamW
[[autodoc]] timm.optim.lamb.Lamb
[[autodoc]] timm.optim.lars.Lars
[[autodoc]] timm.optim.lookahead.Lookahead
[[autodoc]] timm.optim.madgrad.MADGRAD
[[autodoc]] timm.optim.nadam.Nadam
[[autodoc]] timm.optim.nvnovograd.NvNovoGrad
[[autodoc]] timm.optim.radam.RAdam
[[autodoc]] timm.optim.rmsprop_tf.RMSpropTF
[[autodoc]] timm.optim.sgdp.SGDP

@ -0,0 +1,19 @@
# Learning Rate Schedulers
This page contains the API reference documentation for learning rate schedulers included in `timm`.
## Schedulers
### Factory functions
[[autodoc]] timm.scheduler.scheduler_factory.create_scheduler
[[autodoc]] timm.scheduler.scheduler_factory.create_scheduler_v2
### Scheduler Classes
[[autodoc]] timm.scheduler.cosine_lr.CosineLRScheduler
[[autodoc]] timm.scheduler.multistep_lr.MultiStepLRScheduler
[[autodoc]] timm.scheduler.plateau_lr.PlateauLRScheduler
[[autodoc]] timm.scheduler.poly_lr.PolyLRScheduler
[[autodoc]] timm.scheduler.step_lr.StepLRScheduler
[[autodoc]] timm.scheduler.tanh_lr.TanhLRScheduler

@ -1,35 +0,0 @@
# Scripts
A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release.
The training and validation scripts evolved from early versions of the [PyTorch Imagenet Examples](https://github.com/pytorch/examples). I have added significant functionality over time, including CUDA specific performance enhancements based on
[NVIDIA's APEX Examples](https://github.com/NVIDIA/apex/tree/master/examples).
## Training Script
The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a `train` and `validation` folder.
To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value:
```bash
./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4
```
<Tip>
It is recommended to use PyTorch 1.9+ w/ PyTorch native AMP and DDP instead of APEX AMP. --amp defaults to native AMP as of timm ver 0.4.3. --apex-amp will force use of APEX components if they are installed.
</Tip>
## Validation / Inference Scripts
Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script.
To validate with the model's pretrained weights (if they exist):
```bash
python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained
```
To run inference from a checkpoint:
```bash
python inference.py /imagenet/validation/ --model mobilenetv3_large_100 --checkpoint ./output/train/model_best.pth.tar
```

@ -1,6 +1,44 @@
# Training Examples
# Scripts
## EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5
A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release.
The training and validation scripts evolved from early versions of the [PyTorch Imagenet Examples](https://github.com/pytorch/examples). I have added significant functionality over time, including CUDA specific performance enhancements based on
[NVIDIA's APEX Examples](https://github.com/NVIDIA/apex/tree/master/examples).
## Training Script
The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a `train` and `validation` folder.
To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value:
```bash
./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4
```
<Tip>
It is recommended to use PyTorch 1.9+ w/ PyTorch native AMP and DDP instead of APEX AMP. --amp defaults to native AMP as of timm ver 0.4.3. --apex-amp will force use of APEX components if they are installed.
</Tip>
## Validation / Inference Scripts
Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script.
To validate with the model's pretrained weights (if they exist):
```bash
python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained
```
To run inference from a checkpoint:
```bash
python inference.py /imagenet/validation/ --model mobilenetv3_large_100 --checkpoint ./output/train/model_best.pth.tar
```
## Training Examples
### EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5
These params are for dual Titan RTX cards with NVIDIA Apex installed:
@ -8,7 +46,7 @@ These params are for dual Titan RTX cards with NVIDIA Apex installed:
./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016
```
## MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5
### MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5
This params are for dual Titan RTX cards with NVIDIA Apex installed:
@ -16,45 +54,45 @@ This params are for dual Titan RTX cards with NVIDIA Apex installed:
./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce
```
## SE-ResNeXt-26-D and SE-ResNeXt-26-T
### SE-ResNeXt-26-D and SE-ResNeXt-26-T
These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards:
```bash
./distributed_train.sh 2 /imagenet/ --model seresnext26t_32x4d --lr 0.1 --warmup-epochs 5 --epochs 160 --weight-decay 1e-4 --sched cosine --reprob 0.4 --remode pixel -b 112
```
## EfficientNet-B3 with RandAugment - 81.5 top-1, 95.7 top-5
### EfficientNet-B3 with RandAugment - 81.5 top-1, 95.7 top-5
The training of this model started with the same command line as EfficientNet-B2 w/ RA above. After almost three weeks of training the process crashed. The results weren't looking amazing so I resumed the training several times with tweaks to a few params (increase RE prob, decrease rand-aug, increase ema-decay). Nothing looked great. I ended up averaging the best checkpoints from all restarts. The result is mediocre at default res/crop but oddly performs much better with a full image test crop of 1.0.
## EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5
### EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5
[Michael Klachko](https://github.com/michaelklachko) achieved these results with the command line for B2 adapted for larger batch size, with the recommended B0 dropout rate of 0.2.
```bash
./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048
```
## ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5
### ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5
Trained on two older 1080Ti cards, this took a while. Only slightly, non statistically better ImageNet validation result than my first good AugMix training of 78.99. However, these weights are more robust on tests with ImageNetV2, ImageNet-Sketch, etc. Unlike my first AugMix runs, I've enabled SplitBatchNorm, disabled random erasing on the clean split, and cranked up random erasing prob on the 2 augmented paths.
```bash
./distributed_train.sh 2 /imagenet -b 64 --model resnet50 --sched cosine --epochs 200 --lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce
```
## EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5
### EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5
Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model EMA was not used, final checkpoint is the average of 8 best checkpoints during training.
```bash
./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064
```
## MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5
### MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5
```bash
./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9
```
## ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5
### ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5
These params will also work well for SE-ResNeXt-50 and SK-ResNeXt-50 and likely 101. I used them for the SK-ResNeXt-50 32x4d that I trained with 2 GPU using a slightly higher LR per effective batch size (lr=0.18, b=192 per GPU). The cmd line below are tuned for 8 GPU training.
Loading…
Cancel
Save