Create blseresnext-test.ipynb

pull/95/head
Chris Ha 5 years ago
parent 3c910705a9
commit 91b13658e0

@ -0,0 +1,138 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from fastai.vision import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import timm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#setup paths\n",
"path = Path(untar_data(URLs.CIFAR_100))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#hyperparameters\n",
"learning_rate = 0.0005133\n",
"dropout = 0.4068\n",
"bs = 32\n",
"epochs=10"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"ename": "TypeError",
"evalue": "new() received an invalid combination of arguments - got (bool, int), but expected one of:\n * (torch.device device)\n * (torch.Storage storage)\n * (Tensor other)\n * (tuple of ints size, torch.device device)\n didn't match because some of the arguments have invalid types: (\u001b[31;1mbool\u001b[0m, \u001b[31;1mint\u001b[0m)\n * (object data, torch.device device)\n didn't match because some of the arguments have invalid types: (\u001b[31;1mbool\u001b[0m, \u001b[31;1mint\u001b[0m)\n",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-5-7a35ae156aa7>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m#timm.models.blresnet_model(50,2,4)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;31m#timm.models.blresnext_model(50,4,32,2,4,pretrained = True)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 5\u001b[1;33m \u001b[0mtimm\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mblseresnext_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m50\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m32\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32mG:\\Notebooks\\my-timm\\timm\\models\\blseresnext.py\u001b[0m in \u001b[0;36mblseresnext_model\u001b[1;34m(depth, basewidth, cardinality, alpha, beta, use_se, num_classes, pretrained)\u001b[0m\n\u001b[0;32m 299\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 300\u001b[0m model = bLSEResNeXt(Bottleneck, layers, basewidth, cardinality,\n\u001b[1;32m--> 301\u001b[1;33m alpha, beta, num_classes,use_se)\n\u001b[0m\u001b[0;32m 302\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mpretrained\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 303\u001b[0m url = model_urls['blseresnext-{}-{}x{}d-a{}-b{}'.format(depth, cardinality,\n",
"\u001b[1;32mG:\\Notebooks\\my-timm\\timm\\models\\blseresnext.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, block, layers, basewidth, cardinality, alpha, beta, use_se, num_classes)\u001b[0m\n\u001b[0;32m 199\u001b[0m num_channels[3] * block.expansion, layers[3], basewidth, cardinality, stride=2)\n\u001b[0;32m 200\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgappool\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mAdaptiveAvgPool2d\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 201\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mLinear\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnum_channels\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mblock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexpansion\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnum_classes\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 202\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 203\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mm\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodules\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\Anaconda3\\envs\\fastai_v1\\lib\\site-packages\\torch\\nn\\modules\\linear.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_features, out_features, bias)\u001b[0m\n\u001b[0;32m 70\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0min_features\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0min_features\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 71\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mout_features\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mout_features\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 72\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mweight\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mParameter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTensor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mout_features\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0min_features\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 73\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbias\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mParameter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTensor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mout_features\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mTypeError\u001b[0m: new() received an invalid combination of arguments - got (bool, int), but expected one of:\n * (torch.device device)\n * (torch.Storage storage)\n * (Tensor other)\n * (tuple of ints size, torch.device device)\n didn't match because some of the arguments have invalid types: (\u001b[31;1mbool\u001b[0m, \u001b[31;1mint\u001b[0m)\n * (object data, torch.device device)\n didn't match because some of the arguments have invalid types: (\u001b[31;1mbool\u001b[0m, \u001b[31;1mint\u001b[0m)\n"
]
}
],
"source": [
"#models\n",
"#model = models.resnet50\n",
"#timm.models.blresnet_model(50,2,4)\n",
"#timm.models.blresnext_model(50,4,32,2,4,pretrained = True)\n",
"timm.models.blseresnext_model(50,4,32,2,4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tfms = get_transforms(do_flip=True, flip_vert=True, max_rotate=25, max_lighting=0.1, max_zoom=1.05, max_warp=0.9)\n",
"\n",
"data = (ImageList.from_folder(path)\n",
".split_by_rand_pct()\n",
".label_from_folder()\n",
".transform(get_transforms())\n",
".databunch()\n",
".normalize(imagenet_stats))\n",
"\n",
"learn = cnn_learner(data,\n",
"model,\n",
"pretrained=False,\n",
"ps=dropout,\n",
"metrics=accuracy).to_fp16()\n",
"\n",
"learn.fit_one_cycle(epochs, max_lr=learning_rate)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"learn.save(inity1)\n",
"learn.export(init1y.pkl)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:fastai_v1] *",
"language": "python",
"name": "conda-env-fastai_v1-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading…
Cancel
Save