|
|
|
@ -124,6 +124,9 @@ default_cfgs = {
|
|
|
|
|
'tf_efficientnet_b7': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth',
|
|
|
|
|
input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949),
|
|
|
|
|
'tf_efficientnet_b8': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth',
|
|
|
|
|
input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954),
|
|
|
|
|
'tf_efficientnet_b0_ap': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth',
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)),
|
|
|
|
@ -1059,9 +1062,20 @@ def tf_efficientnet_b7(pretrained=False, **kwargs):
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b8(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B8. Tensorflow compatible variant """
|
|
|
|
|
# NOTE for train, drop_rate should be 0.5
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
|
'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b0_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B0. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B0 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
@ -1071,7 +1085,7 @@ def tf_efficientnet_b0_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b1_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B1. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B1 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
@ -1081,7 +1095,7 @@ def tf_efficientnet_b1_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b2_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B2. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B2 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
@ -1091,7 +1105,7 @@ def tf_efficientnet_b2_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b3_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B3. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B3 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
@ -1101,7 +1115,7 @@ def tf_efficientnet_b3_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b4_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B4. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B4 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
@ -1111,7 +1125,7 @@ def tf_efficientnet_b4_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b5_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B5. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B5 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
@ -1121,7 +1135,7 @@ def tf_efficientnet_b5_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b6_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B6. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B6 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
# NOTE for train, drop_rate should be 0.5
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
@ -1132,7 +1146,7 @@ def tf_efficientnet_b6_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b7_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B7. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B7 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
# NOTE for train, drop_rate should be 0.5
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
@ -1143,7 +1157,7 @@ def tf_efficientnet_b7_ap(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tf_efficientnet_b8_ap(pretrained=False, **kwargs):
|
|
|
|
|
""" EfficientNet-B7. Tensorflow compatible variant """
|
|
|
|
|
""" EfficientNet-B8 AdvProp. Tensorflow compatible variant """
|
|
|
|
|
# NOTE for train, drop_rate should be 0.5
|
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
|