Merge remote-tracking branch 'upstream/master'

pull/82/head
Chris Ha 5 years ago
commit 89a32454e1

@ -2,13 +2,15 @@
## What's New
### Jan 31, 2020
* Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below.
### Jan 11/12, 2020
* Master may be a bit unstable wrt to training, these changes have been tested but not all combos
* Implementations of AugMix added to existing RA and AA. Including numerous supporting pieces like JSD loss (Jensen-Shannon divergence + CE), and AugMixDataset
* SplitBatchNorm adaptation layer added for implementing Auxiliary BN as per AdvProp paper
* ResNet-50 AugMix trained model w/ 79% top-1 added
* `seresnext26tn_32x4d` - 77.99 top-1, 93.75 top-5 added to tiered experiment, higher img/s than 't' and 'd'
* Command lines/hparams and more AugMix and related model updates for above coming soon...
### Jan 3, 2020
* Add RandAugment trained EfficientNet-B0 weight with 77.7 top-1. Trained by [Michael Klachko](https://github.com/michaelklachko) with this code and recent hparams (see Training section)
@ -140,7 +142,7 @@ I've leveraged the training scripts in this repository to train a few of the mod
| mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90M | bicubic | 224 |
| efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11M | bicubic | 260 |
| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1M | bicubic | 224 |
| resnet50 | 78.994 (21.006) | 94.396 (5.604) | 25.6M | bicubic | 224 |
| resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6M | bicubic | 224 |
| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33M | bicubic | 224 |
| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79M | bicubic | 240 |
| resnext50_32x4d | 78.512 (21.488) | 94.042 (5.958) | 25M | bicubic | 224 |
@ -292,6 +294,11 @@ Michael Klachko achieved these results with the command line for B2 adapted for
`./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048`
### ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5
Trained on two older 1080Ti cards, this took a while. Only slightly, non statistically better ImageNet validation result than my first good AugMix training of 78.99. However, these weights are more robust on tests with ImageNetV2, ImageNet-Sketch, etc. Unlike my first AugMix runs, I've enabled SplitBatchNorm, disabled random erasing on the clean split, and cranked up random erasing prob on the 2 augmented paths.
`./distributed_train.sh 2 /imagenet -b 64 --model resnet50 --sched cosine --epochs 200 --lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce`
**TODO dig up some more**

@ -1,155 +0,0 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,85.442,14.558,97.572,2.428,828.41,224,0.875,bilinear
tf_efficientnet_b8_ap,85.368,14.632,97.294,2.706,87.41,672,0.954,bicubic
tf_efficientnet_b7_ap,85.118,14.882,97.252,2.748,66.35,600,0.949,bicubic
ig_resnext101_32x32d,85.092,14.908,97.436,2.564,468.53,224,0.875,bilinear
tf_efficientnet_b7,84.932,15.068,97.208,2.792,66.35,600,0.949,bicubic
tf_efficientnet_b6_ap,84.786,15.214,97.138,2.862,43.04,528,0.942,bicubic
swsl_resnext101_32x8d,84.294,15.706,97.174,2.826,88.79,224,0.875,bilinear
tf_efficientnet_b5_ap,84.254,15.746,96.976,3.024,30.39,456,0.934,bicubic
ig_resnext101_32x16d,84.176,15.824,97.196,2.804,194.03,224,0.875,bilinear
tf_efficientnet_b6,84.112,15.888,96.884,3.116,43.04,528,0.942,bicubic
tf_efficientnet_b5,83.816,16.184,96.75,3.25,30.39,456,0.934,bicubic
swsl_resnext101_32x16d,83.338,16.662,96.852,3.148,194.03,224,0.875,bilinear
tf_efficientnet_b4_ap,83.248,16.752,96.388,3.612,19.34,380,0.922,bicubic
swsl_resnext101_32x4d,83.234,16.766,96.756,3.244,44.18,224,0.875,bilinear
tf_efficientnet_b4,83.016,16.984,96.298,3.702,19.34,380,0.922,bicubic
pnasnet5large,82.74,17.26,96.04,3.96,86.06,331,0.875,bicubic
ig_resnext101_32x8d,82.688,17.312,96.632,3.368,88.79,224,0.875,bilinear
nasnetalarge,82.558,17.442,96.036,3.964,88.75,331,0.875,bicubic
swsl_resnext50_32x4d,82.18,17.82,96.228,3.772,25.03,224,0.875,bilinear
ssl_resnext101_32x16d,81.836,18.164,96.094,3.906,194.03,224,0.875,bilinear
tf_efficientnet_b3_ap,81.828,18.172,95.624,4.376,12.23,300,0.904,bicubic
tf_efficientnet_b3,81.64,18.36,95.722,4.278,12.23,300,0.904,bicubic
ssl_resnext101_32x8d,81.626,18.374,96.038,3.962,88.79,224,0.875,bilinear
senet154,81.304,18.696,95.498,4.502,115.09,224,0.875,bilinear
gluon_senet154,81.224,18.776,95.356,4.644,115.09,224,0.875,bicubic
swsl_resnet50,81.18,18.82,95.986,4.014,25.56,224,0.875,bilinear
gluon_resnet152_v1s,81.012,18.988,95.416,4.584,60.32,224,0.875,bicubic
ssl_resnext101_32x4d,80.928,19.072,95.728,4.272,44.18,224,0.875,bilinear
gluon_seresnext101_32x4d,80.902,19.098,95.294,4.706,48.96,224,0.875,bicubic
gluon_seresnext101_64x4d,80.89,19.11,95.304,4.696,88.23,224,0.875,bicubic
gluon_resnext101_64x4d,80.602,19.398,94.994,5.006,83.46,224,0.875,bicubic
gluon_resnet152_v1d,80.47,19.53,95.206,4.794,60.21,224,0.875,bicubic
inception_resnet_v2,80.46,19.54,95.31,4.69,55.84,299,0.8975,bicubic
tf_efficientnet_el,80.448,19.552,95.16,4.84,10.59,300,0.904,bicubic
gluon_resnet101_v1d,80.424,19.576,95.02,4.98,44.57,224,0.875,bicubic
gluon_resnext101_32x4d,80.334,19.666,94.926,5.074,44.18,224,0.875,bicubic
ssl_resnext50_32x4d,80.328,19.672,95.404,4.596,25.03,224,0.875,bilinear
tf_efficientnet_b2_ap,80.306,19.694,95.028,4.972,9.11,260,0.89,bicubic
gluon_resnet101_v1s,80.3,19.7,95.15,4.85,44.67,224,0.875,bicubic
seresnext101_32x4d,80.236,19.764,95.028,4.972,48.96,224,0.875,bilinear
dpn107,80.164,19.836,94.912,5.088,86.92,224,0.875,bicubic
inception_v4,80.156,19.844,94.974,5.026,42.68,299,0.875,bicubic
mixnet_xl,80.12,19.88,95.022,4.978,11.9,224,0.875,bicubic
tf_efficientnet_b2,80.09,19.91,94.906,5.094,9.11,260,0.89,bicubic
dpn92,80.016,19.984,94.838,5.162,37.67,224,0.875,bicubic
ens_adv_inception_resnet_v2,79.976,20.024,94.946,5.054,55.84,299,0.8975,bicubic
gluon_resnet152_v1c,79.916,20.084,94.842,5.158,60.21,224,0.875,bicubic
gluon_seresnext50_32x4d,79.912,20.088,94.818,5.182,27.56,224,0.875,bicubic
dpn131,79.828,20.172,94.704,5.296,79.25,224,0.875,bicubic
efficientnet_b2,79.752,20.248,94.71,5.29,9.11,260,0.89,bicubic
gluon_resnet152_v1b,79.692,20.308,94.738,5.262,60.19,224,0.875,bicubic
resnext50d_32x4d,79.674,20.326,94.868,5.132,25.05,224,0.875,bicubic
dpn98,79.636,20.364,94.594,5.406,61.57,224,0.875,bicubic
gluon_xception65,79.604,20.396,94.748,5.252,39.92,299,0.875,bicubic
gluon_resnet101_v1c,79.544,20.456,94.586,5.414,44.57,224,0.875,bicubic
hrnet_w64,79.472,20.528,94.65,5.35,128.06,224,0.875,bilinear
dla102x2,79.452,20.548,94.644,5.356,41.75,224,0.875,bilinear
gluon_resnext50_32x4d,79.356,20.644,94.424,5.576,25.03,224,0.875,bicubic
resnext101_32x8d,79.312,20.688,94.526,5.474,88.79,224,0.875,bilinear
hrnet_w48,79.31,20.69,94.52,5.48,77.47,224,0.875,bilinear
gluon_resnet101_v1b,79.304,20.696,94.524,5.476,44.55,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,79.298,20.702,94.364,5.636,39.72,240,0.882,bicubic
tf_efficientnet_b1_ap,79.278,20.722,94.308,5.692,7.79,240,0.882,bicubic
ssl_resnet50,79.228,20.772,94.832,5.168,25.56,224,0.875,bilinear
res2net50_26w_8s,79.21,20.79,94.362,5.638,48.4,224,0.875,bilinear
res2net101_26w_4s,79.196,20.804,94.44,5.56,45.21,224,0.875,bilinear
seresnext50_32x4d,79.076,20.924,94.434,5.566,27.56,224,0.875,bilinear
gluon_resnet50_v1d,79.074,20.926,94.476,5.524,25.58,224,0.875,bicubic
xception,79.048,20.952,94.392,5.608,22.86,299,0.8975,bicubic
mixnet_l,78.976,21.024,94.184,5.816,7.33,224,0.875,bicubic
hrnet_w40,78.934,21.066,94.466,5.534,57.56,224,0.875,bilinear
hrnet_w44,78.894,21.106,94.37,5.63,67.06,224,0.875,bilinear
wide_resnet101_2,78.846,21.154,94.284,5.716,126.89,224,0.875,bilinear
tf_efficientnet_b1,78.832,21.168,94.196,5.804,7.79,240,0.882,bicubic
gluon_inception_v3,78.804,21.196,94.38,5.62,23.83,299,0.875,bicubic
tf_mixnet_l,78.77,21.23,94.004,5.996,7.33,224,0.875,bicubic
gluon_resnet50_v1s,78.712,21.288,94.242,5.758,25.68,224,0.875,bicubic
dla169,78.71,21.29,94.338,5.662,53.99,224,0.875,bilinear
tf_efficientnet_em,78.698,21.302,94.32,5.68,6.9,240,0.882,bicubic
efficientnet_b1,78.692,21.308,94.086,5.914,7.79,240,0.882,bicubic
seresnet152,78.658,21.342,94.374,5.626,66.82,224,0.875,bilinear
res2net50_26w_6s,78.574,21.426,94.126,5.874,37.05,224,0.875,bilinear
resnext50_32x4d,78.51,21.49,94.054,5.946,25.03,224,0.875,bicubic
dla102x,78.508,21.492,94.234,5.766,26.77,224,0.875,bilinear
dla60_res2net,78.472,21.528,94.204,5.796,21.15,224,0.875,bilinear
resnet50,78.47,21.53,94.266,5.734,25.56,224,0.875,bicubic
wide_resnet50_2,78.468,21.532,94.086,5.914,68.88,224,0.875,bilinear
dla60_res2next,78.448,21.552,94.144,5.856,17.33,224,0.875,bilinear
hrnet_w32,78.448,21.552,94.188,5.812,41.23,224,0.875,bilinear
seresnet101,78.396,21.604,94.258,5.742,49.33,224,0.875,bilinear
resnet152,78.312,21.688,94.046,5.954,60.19,224,0.875,bilinear
dla60x,78.242,21.758,94.022,5.978,17.65,224,0.875,bilinear
res2next50,78.242,21.758,93.892,6.108,24.67,224,0.875,bilinear
hrnet_w30,78.196,21.804,94.22,5.78,37.71,224,0.875,bilinear
res2net50_14w_8s,78.152,21.848,93.842,6.158,25.06,224,0.875,bilinear
dla102,78.026,21.974,93.95,6.05,33.73,224,0.875,bilinear
gluon_resnet50_v1c,78.012,21.988,93.988,6.012,25.58,224,0.875,bicubic
res2net50_26w_4s,77.946,22.054,93.852,6.148,25.7,224,0.875,bilinear
tf_efficientnet_cc_b0_8e,77.908,22.092,93.656,6.344,24.01,224,0.875,bicubic
tf_inception_v3,77.854,22.146,93.644,6.356,23.83,299,0.875,bicubic
seresnet50,77.636,22.364,93.752,6.248,28.09,224,0.875,bilinear
tv_resnext50_32x4d,77.618,22.382,93.698,6.302,25.03,224,0.875,bilinear
adv_inception_v3,77.58,22.42,93.724,6.276,23.83,299,0.875,bicubic
gluon_resnet50_v1b,77.578,22.422,93.718,6.282,25.56,224,0.875,bicubic
dpn68b,77.514,22.486,93.822,6.178,12.61,224,0.875,bicubic
res2net50_48w_2s,77.514,22.486,93.548,6.452,25.29,224,0.875,bilinear
inception_v3,77.436,22.564,93.476,6.524,27.16,299,0.875,bicubic
resnet101,77.374,22.626,93.546,6.454,44.55,224,0.875,bilinear
densenet161,77.348,22.652,93.648,6.352,28.68,224,0.875,bicubic
tf_efficientnet_cc_b0_4e,77.304,22.696,93.332,6.668,13.31,224,0.875,bicubic
densenet201,77.29,22.71,93.478,6.522,20.01,224,0.875,bicubic
tf_efficientnet_es,77.264,22.736,93.6,6.4,5.44,224,0.875,bicubic
mixnet_m,77.256,22.744,93.418,6.582,5.01,224,0.875,bicubic
seresnext26_32x4d,77.1,22.9,93.31,6.69,16.79,224,0.875,bicubic
tf_efficientnet_b0_ap,77.084,22.916,93.254,6.746,5.29,224,0.875,bicubic
dla60,77.022,22.978,93.308,6.692,22.33,224,0.875,bilinear
tf_mixnet_m,76.95,23.05,93.156,6.844,5.01,224,0.875,bicubic
efficientnet_b0,76.914,23.086,93.206,6.794,5.29,224,0.875,bicubic
tf_efficientnet_b0,76.84,23.16,93.226,6.774,5.29,224,0.875,bicubic
hrnet_w18,76.756,23.244,93.442,6.558,21.3,224,0.875,bilinear
resnet26d,76.68,23.32,93.166,6.834,16.01,224,0.875,bicubic
dpn68,76.306,23.694,92.97,7.03,12.61,224,0.875,bicubic
tv_resnet50,76.13,23.87,92.862,7.138,25.56,224,0.875,bilinear
mixnet_s,75.988,24.012,92.794,7.206,4.13,224,0.875,bicubic
densenet169,75.912,24.088,93.024,6.976,14.15,224,0.875,bicubic
tf_mixnet_s,75.648,24.352,92.636,7.364,4.13,224,0.875,bicubic
mobilenetv3_rw,75.628,24.372,92.708,7.292,5.48,224,0.875,bicubic
tf_mobilenetv3_large_100,75.516,24.484,92.6,7.4,5.48,224,0.875,bilinear
semnasnet_100,75.456,24.544,92.592,7.408,3.89,224,0.875,bicubic
resnet26,75.292,24.708,92.57,7.43,16,224,0.875,bicubic
hrnet_w18_small_v2,75.126,24.874,92.416,7.584,15.6,224,0.875,bilinear
fbnetc_100,75.12,24.88,92.386,7.614,5.57,224,0.875,bilinear
resnet34,75.112,24.888,92.288,7.712,21.8,224,0.875,bilinear
seresnet34,74.808,25.192,92.126,7.874,21.96,224,0.875,bilinear
densenet121,74.752,25.248,92.152,7.848,7.98,224,0.875,bicubic
mnasnet_100,74.656,25.344,92.126,7.874,4.38,224,0.875,bicubic
dla34,74.636,25.364,92.064,7.936,15.78,224,0.875,bilinear
gluon_resnet34_v1b,74.58,25.42,91.988,8.012,21.8,224,0.875,bicubic
spnasnet_100,74.08,25.92,91.832,8.168,4.42,224,0.875,bilinear
tf_mobilenetv3_large_075,73.442,26.558,91.352,8.648,3.99,224,0.875,bilinear
tv_resnet34,73.314,26.686,91.42,8.58,21.8,224,0.875,bilinear
swsl_resnet18,73.286,26.714,91.732,8.268,11.69,224,0.875,bilinear
ssl_resnet18,72.6,27.4,91.416,8.584,11.69,224,0.875,bilinear
hrnet_w18_small,72.342,27.658,90.672,9.328,13.19,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,72.244,27.756,90.636,9.364,3.92,224,0.875,bilinear
seresnet18,71.758,28.242,90.334,9.666,11.78,224,0.875,bicubic
gluon_resnet18_v1b,70.83,29.17,89.756,10.244,11.69,224,0.875,bicubic
resnet18,69.758,30.242,89.078,10.922,11.69,224,0.875,bilinear
tf_mobilenetv3_small_100,67.918,32.082,87.662,12.338,2.54,224,0.875,bilinear
dla60x_c,67.906,32.094,88.434,11.566,1.34,224,0.875,bilinear
dla46x_c,65.98,34.02,86.98,13.02,1.08,224,0.875,bilinear
tf_mobilenetv3_small_075,65.718,34.282,86.136,13.864,2.04,224,0.875,bilinear
dla46_c,64.878,35.122,86.286,13.714,1.31,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,62.898,37.102,84.23,15.77,2.04,224,0.875,bilinear
1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d 85.442 14.558 97.572 2.428 828.41 224 0.875 bilinear
3 tf_efficientnet_b8_ap 85.368 14.632 97.294 2.706 87.41 672 0.954 bicubic
4 tf_efficientnet_b7_ap 85.118 14.882 97.252 2.748 66.35 600 0.949 bicubic
5 ig_resnext101_32x32d 85.092 14.908 97.436 2.564 468.53 224 0.875 bilinear
6 tf_efficientnet_b7 84.932 15.068 97.208 2.792 66.35 600 0.949 bicubic
7 tf_efficientnet_b6_ap 84.786 15.214 97.138 2.862 43.04 528 0.942 bicubic
8 swsl_resnext101_32x8d 84.294 15.706 97.174 2.826 88.79 224 0.875 bilinear
9 tf_efficientnet_b5_ap 84.254 15.746 96.976 3.024 30.39 456 0.934 bicubic
10 ig_resnext101_32x16d 84.176 15.824 97.196 2.804 194.03 224 0.875 bilinear
11 tf_efficientnet_b6 84.112 15.888 96.884 3.116 43.04 528 0.942 bicubic
12 tf_efficientnet_b5 83.816 16.184 96.75 3.25 30.39 456 0.934 bicubic
13 swsl_resnext101_32x16d 83.338 16.662 96.852 3.148 194.03 224 0.875 bilinear
14 tf_efficientnet_b4_ap 83.248 16.752 96.388 3.612 19.34 380 0.922 bicubic
15 swsl_resnext101_32x4d 83.234 16.766 96.756 3.244 44.18 224 0.875 bilinear
16 tf_efficientnet_b4 83.016 16.984 96.298 3.702 19.34 380 0.922 bicubic
17 pnasnet5large 82.74 17.26 96.04 3.96 86.06 331 0.875 bicubic
18 ig_resnext101_32x8d 82.688 17.312 96.632 3.368 88.79 224 0.875 bilinear
19 nasnetalarge 82.558 17.442 96.036 3.964 88.75 331 0.875 bicubic
20 swsl_resnext50_32x4d 82.18 17.82 96.228 3.772 25.03 224 0.875 bilinear
21 ssl_resnext101_32x16d 81.836 18.164 96.094 3.906 194.03 224 0.875 bilinear
22 tf_efficientnet_b3_ap 81.828 18.172 95.624 4.376 12.23 300 0.904 bicubic
23 tf_efficientnet_b3 81.64 18.36 95.722 4.278 12.23 300 0.904 bicubic
24 ssl_resnext101_32x8d 81.626 18.374 96.038 3.962 88.79 224 0.875 bilinear
25 senet154 81.304 18.696 95.498 4.502 115.09 224 0.875 bilinear
26 gluon_senet154 81.224 18.776 95.356 4.644 115.09 224 0.875 bicubic
27 swsl_resnet50 81.18 18.82 95.986 4.014 25.56 224 0.875 bilinear
28 gluon_resnet152_v1s 81.012 18.988 95.416 4.584 60.32 224 0.875 bicubic
29 ssl_resnext101_32x4d 80.928 19.072 95.728 4.272 44.18 224 0.875 bilinear
30 gluon_seresnext101_32x4d 80.902 19.098 95.294 4.706 48.96 224 0.875 bicubic
31 gluon_seresnext101_64x4d 80.89 19.11 95.304 4.696 88.23 224 0.875 bicubic
32 gluon_resnext101_64x4d 80.602 19.398 94.994 5.006 83.46 224 0.875 bicubic
33 gluon_resnet152_v1d 80.47 19.53 95.206 4.794 60.21 224 0.875 bicubic
34 inception_resnet_v2 80.46 19.54 95.31 4.69 55.84 299 0.8975 bicubic
35 tf_efficientnet_el 80.448 19.552 95.16 4.84 10.59 300 0.904 bicubic
36 gluon_resnet101_v1d 80.424 19.576 95.02 4.98 44.57 224 0.875 bicubic
37 gluon_resnext101_32x4d 80.334 19.666 94.926 5.074 44.18 224 0.875 bicubic
38 ssl_resnext50_32x4d 80.328 19.672 95.404 4.596 25.03 224 0.875 bilinear
39 tf_efficientnet_b2_ap 80.306 19.694 95.028 4.972 9.11 260 0.89 bicubic
40 gluon_resnet101_v1s 80.3 19.7 95.15 4.85 44.67 224 0.875 bicubic
41 seresnext101_32x4d 80.236 19.764 95.028 4.972 48.96 224 0.875 bilinear
42 dpn107 80.164 19.836 94.912 5.088 86.92 224 0.875 bicubic
43 inception_v4 80.156 19.844 94.974 5.026 42.68 299 0.875 bicubic
44 mixnet_xl 80.12 19.88 95.022 4.978 11.9 224 0.875 bicubic
45 tf_efficientnet_b2 80.09 19.91 94.906 5.094 9.11 260 0.89 bicubic
46 dpn92 80.016 19.984 94.838 5.162 37.67 224 0.875 bicubic
47 ens_adv_inception_resnet_v2 79.976 20.024 94.946 5.054 55.84 299 0.8975 bicubic
48 gluon_resnet152_v1c 79.916 20.084 94.842 5.158 60.21 224 0.875 bicubic
49 gluon_seresnext50_32x4d 79.912 20.088 94.818 5.182 27.56 224 0.875 bicubic
50 dpn131 79.828 20.172 94.704 5.296 79.25 224 0.875 bicubic
51 efficientnet_b2 79.752 20.248 94.71 5.29 9.11 260 0.89 bicubic
52 gluon_resnet152_v1b 79.692 20.308 94.738 5.262 60.19 224 0.875 bicubic
53 resnext50d_32x4d 79.674 20.326 94.868 5.132 25.05 224 0.875 bicubic
54 dpn98 79.636 20.364 94.594 5.406 61.57 224 0.875 bicubic
55 gluon_xception65 79.604 20.396 94.748 5.252 39.92 299 0.875 bicubic
56 gluon_resnet101_v1c 79.544 20.456 94.586 5.414 44.57 224 0.875 bicubic
57 hrnet_w64 79.472 20.528 94.65 5.35 128.06 224 0.875 bilinear
58 dla102x2 79.452 20.548 94.644 5.356 41.75 224 0.875 bilinear
59 gluon_resnext50_32x4d 79.356 20.644 94.424 5.576 25.03 224 0.875 bicubic
60 resnext101_32x8d 79.312 20.688 94.526 5.474 88.79 224 0.875 bilinear
61 hrnet_w48 79.31 20.69 94.52 5.48 77.47 224 0.875 bilinear
62 gluon_resnet101_v1b 79.304 20.696 94.524 5.476 44.55 224 0.875 bicubic
63 tf_efficientnet_cc_b1_8e 79.298 20.702 94.364 5.636 39.72 240 0.882 bicubic
64 tf_efficientnet_b1_ap 79.278 20.722 94.308 5.692 7.79 240 0.882 bicubic
65 ssl_resnet50 79.228 20.772 94.832 5.168 25.56 224 0.875 bilinear
66 res2net50_26w_8s 79.21 20.79 94.362 5.638 48.4 224 0.875 bilinear
67 res2net101_26w_4s 79.196 20.804 94.44 5.56 45.21 224 0.875 bilinear
68 seresnext50_32x4d 79.076 20.924 94.434 5.566 27.56 224 0.875 bilinear
69 gluon_resnet50_v1d 79.074 20.926 94.476 5.524 25.58 224 0.875 bicubic
70 xception 79.048 20.952 94.392 5.608 22.86 299 0.8975 bicubic
71 mixnet_l 78.976 21.024 94.184 5.816 7.33 224 0.875 bicubic
72 hrnet_w40 78.934 21.066 94.466 5.534 57.56 224 0.875 bilinear
73 hrnet_w44 78.894 21.106 94.37 5.63 67.06 224 0.875 bilinear
74 wide_resnet101_2 78.846 21.154 94.284 5.716 126.89 224 0.875 bilinear
75 tf_efficientnet_b1 78.832 21.168 94.196 5.804 7.79 240 0.882 bicubic
76 gluon_inception_v3 78.804 21.196 94.38 5.62 23.83 299 0.875 bicubic
77 tf_mixnet_l 78.77 21.23 94.004 5.996 7.33 224 0.875 bicubic
78 gluon_resnet50_v1s 78.712 21.288 94.242 5.758 25.68 224 0.875 bicubic
79 dla169 78.71 21.29 94.338 5.662 53.99 224 0.875 bilinear
80 tf_efficientnet_em 78.698 21.302 94.32 5.68 6.9 240 0.882 bicubic
81 efficientnet_b1 78.692 21.308 94.086 5.914 7.79 240 0.882 bicubic
82 seresnet152 78.658 21.342 94.374 5.626 66.82 224 0.875 bilinear
83 res2net50_26w_6s 78.574 21.426 94.126 5.874 37.05 224 0.875 bilinear
84 resnext50_32x4d 78.51 21.49 94.054 5.946 25.03 224 0.875 bicubic
85 dla102x 78.508 21.492 94.234 5.766 26.77 224 0.875 bilinear
86 dla60_res2net 78.472 21.528 94.204 5.796 21.15 224 0.875 bilinear
87 resnet50 78.47 21.53 94.266 5.734 25.56 224 0.875 bicubic
88 wide_resnet50_2 78.468 21.532 94.086 5.914 68.88 224 0.875 bilinear
89 dla60_res2next 78.448 21.552 94.144 5.856 17.33 224 0.875 bilinear
90 hrnet_w32 78.448 21.552 94.188 5.812 41.23 224 0.875 bilinear
91 seresnet101 78.396 21.604 94.258 5.742 49.33 224 0.875 bilinear
92 resnet152 78.312 21.688 94.046 5.954 60.19 224 0.875 bilinear
93 dla60x 78.242 21.758 94.022 5.978 17.65 224 0.875 bilinear
94 res2next50 78.242 21.758 93.892 6.108 24.67 224 0.875 bilinear
95 hrnet_w30 78.196 21.804 94.22 5.78 37.71 224 0.875 bilinear
96 res2net50_14w_8s 78.152 21.848 93.842 6.158 25.06 224 0.875 bilinear
97 dla102 78.026 21.974 93.95 6.05 33.73 224 0.875 bilinear
98 gluon_resnet50_v1c 78.012 21.988 93.988 6.012 25.58 224 0.875 bicubic
99 res2net50_26w_4s 77.946 22.054 93.852 6.148 25.7 224 0.875 bilinear
100 tf_efficientnet_cc_b0_8e 77.908 22.092 93.656 6.344 24.01 224 0.875 bicubic
101 tf_inception_v3 77.854 22.146 93.644 6.356 23.83 299 0.875 bicubic
102 seresnet50 77.636 22.364 93.752 6.248 28.09 224 0.875 bilinear
103 tv_resnext50_32x4d 77.618 22.382 93.698 6.302 25.03 224 0.875 bilinear
104 adv_inception_v3 77.58 22.42 93.724 6.276 23.83 299 0.875 bicubic
105 gluon_resnet50_v1b 77.578 22.422 93.718 6.282 25.56 224 0.875 bicubic
106 dpn68b 77.514 22.486 93.822 6.178 12.61 224 0.875 bicubic
107 res2net50_48w_2s 77.514 22.486 93.548 6.452 25.29 224 0.875 bilinear
108 inception_v3 77.436 22.564 93.476 6.524 27.16 299 0.875 bicubic
109 resnet101 77.374 22.626 93.546 6.454 44.55 224 0.875 bilinear
110 densenet161 77.348 22.652 93.648 6.352 28.68 224 0.875 bicubic
111 tf_efficientnet_cc_b0_4e 77.304 22.696 93.332 6.668 13.31 224 0.875 bicubic
112 densenet201 77.29 22.71 93.478 6.522 20.01 224 0.875 bicubic
113 tf_efficientnet_es 77.264 22.736 93.6 6.4 5.44 224 0.875 bicubic
114 mixnet_m 77.256 22.744 93.418 6.582 5.01 224 0.875 bicubic
115 seresnext26_32x4d 77.1 22.9 93.31 6.69 16.79 224 0.875 bicubic
116 tf_efficientnet_b0_ap 77.084 22.916 93.254 6.746 5.29 224 0.875 bicubic
117 dla60 77.022 22.978 93.308 6.692 22.33 224 0.875 bilinear
118 tf_mixnet_m 76.95 23.05 93.156 6.844 5.01 224 0.875 bicubic
119 efficientnet_b0 76.914 23.086 93.206 6.794 5.29 224 0.875 bicubic
120 tf_efficientnet_b0 76.84 23.16 93.226 6.774 5.29 224 0.875 bicubic
121 hrnet_w18 76.756 23.244 93.442 6.558 21.3 224 0.875 bilinear
122 resnet26d 76.68 23.32 93.166 6.834 16.01 224 0.875 bicubic
123 dpn68 76.306 23.694 92.97 7.03 12.61 224 0.875 bicubic
124 tv_resnet50 76.13 23.87 92.862 7.138 25.56 224 0.875 bilinear
125 mixnet_s 75.988 24.012 92.794 7.206 4.13 224 0.875 bicubic
126 densenet169 75.912 24.088 93.024 6.976 14.15 224 0.875 bicubic
127 tf_mixnet_s 75.648 24.352 92.636 7.364 4.13 224 0.875 bicubic
128 mobilenetv3_rw 75.628 24.372 92.708 7.292 5.48 224 0.875 bicubic
129 tf_mobilenetv3_large_100 75.516 24.484 92.6 7.4 5.48 224 0.875 bilinear
130 semnasnet_100 75.456 24.544 92.592 7.408 3.89 224 0.875 bicubic
131 resnet26 75.292 24.708 92.57 7.43 16 224 0.875 bicubic
132 hrnet_w18_small_v2 75.126 24.874 92.416 7.584 15.6 224 0.875 bilinear
133 fbnetc_100 75.12 24.88 92.386 7.614 5.57 224 0.875 bilinear
134 resnet34 75.112 24.888 92.288 7.712 21.8 224 0.875 bilinear
135 seresnet34 74.808 25.192 92.126 7.874 21.96 224 0.875 bilinear
136 densenet121 74.752 25.248 92.152 7.848 7.98 224 0.875 bicubic
137 mnasnet_100 74.656 25.344 92.126 7.874 4.38 224 0.875 bicubic
138 dla34 74.636 25.364 92.064 7.936 15.78 224 0.875 bilinear
139 gluon_resnet34_v1b 74.58 25.42 91.988 8.012 21.8 224 0.875 bicubic
140 spnasnet_100 74.08 25.92 91.832 8.168 4.42 224 0.875 bilinear
141 tf_mobilenetv3_large_075 73.442 26.558 91.352 8.648 3.99 224 0.875 bilinear
142 tv_resnet34 73.314 26.686 91.42 8.58 21.8 224 0.875 bilinear
143 swsl_resnet18 73.286 26.714 91.732 8.268 11.69 224 0.875 bilinear
144 ssl_resnet18 72.6 27.4 91.416 8.584 11.69 224 0.875 bilinear
145 hrnet_w18_small 72.342 27.658 90.672 9.328 13.19 224 0.875 bilinear
146 tf_mobilenetv3_large_minimal_100 72.244 27.756 90.636 9.364 3.92 224 0.875 bilinear
147 seresnet18 71.758 28.242 90.334 9.666 11.78 224 0.875 bicubic
148 gluon_resnet18_v1b 70.83 29.17 89.756 10.244 11.69 224 0.875 bicubic
149 resnet18 69.758 30.242 89.078 10.922 11.69 224 0.875 bilinear
150 tf_mobilenetv3_small_100 67.918 32.082 87.662 12.338 2.54 224 0.875 bilinear
151 dla60x_c 67.906 32.094 88.434 11.566 1.34 224 0.875 bilinear
152 dla46x_c 65.98 34.02 86.98 13.02 1.08 224 0.875 bilinear
153 tf_mobilenetv3_small_075 65.718 34.282 86.136 13.864 2.04 224 0.875 bilinear
154 dla46_c 64.878 35.122 86.286 13.714 1.31 224 0.875 bilinear
155 tf_mobilenetv3_small_minimal_100 62.898 37.102 84.23 15.77 2.04 224 0.875 bilinear

@ -0,0 +1,165 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,41.56,58.44,66.5467,33.4533,828.41,224,0.875,bilinear
ig_resnext101_32x32d,39.4267,60.5733,63.7867,36.2133,468.53,224,0.875,bilinear
ig_resnext101_32x16d,36.0,64.0,59.0,41.0,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,32.0133,67.9867,59.44,40.56,88.79,224,0.875,bilinear
tf_efficientnet_b8_ap,29.5867,70.4133,56.9333,43.0667,87.41,672,0.954,bicubic
tf_efficientnet_b8,29.3867,70.6133,57.0533,42.9467,87.41,672,0.954,bicubic
ig_resnext101_32x8d,28.6667,71.3333,52.32,47.68,88.79,224,0.875,bilinear
swsl_resnext101_32x16d,27.9467,72.0533,52.2933,47.7067,194.03,224,0.875,bilinear
tf_efficientnet_b7_ap,27.8267,72.1733,54.7733,45.2267,66.35,600,0.949,bicubic
swsl_resnext101_32x4d,25.3067,74.6933,49.6267,50.3733,44.18,224,0.875,bilinear
tf_efficientnet_b7,25.28,74.72,51.6667,48.3333,66.35,600,0.949,bicubic
tf_efficientnet_b6_ap,24.3467,75.6533,50.44,49.56,43.04,528,0.942,bicubic
tf_efficientnet_b6,20.3733,79.6267,45.48,54.52,43.04,528,0.942,bicubic
tf_efficientnet_b5_ap,19.4667,80.5333,44.7333,55.2667,30.39,456,0.934,bicubic
swsl_resnext50_32x4d,18.04,81.96,41.9733,58.0267,25.03,224,0.875,bilinear
ssl_resnext101_32x16d,17.1867,82.8133,39.9333,60.0667,194.03,224,0.875,bilinear
tf_efficientnet_b5,17.0533,82.9467,41.92,58.08,30.39,456,0.934,bicubic
swsl_resnet50,15.9467,84.0533,38.8533,61.1467,25.56,224,0.875,bilinear
ssl_resnext101_32x8d,15.12,84.88,37.6933,62.3067,88.79,224,0.875,bilinear
tf_efficientnet_b4_ap,13.6667,86.3333,35.9467,64.0533,19.34,380,0.922,bicubic
tf_efficientnet_b4,13.32,86.68,35.5333,64.4667,19.34,380,0.922,bicubic
pnasnet5large,13.0533,86.9467,32.2267,67.7733,86.06,331,0.875,bicubic
nasnetalarge,12.56,87.44,33.4267,66.5733,88.75,331,0.875,bicubic
ssl_resnext101_32x4d,12.1067,87.8933,31.8933,68.1067,44.18,224,0.875,bilinear
gluon_senet154,9.8933,90.1067,26.4267,73.5733,115.09,224,0.875,bicubic
ssl_resnext50_32x4d,9.6533,90.3467,28.4667,71.5333,25.03,224,0.875,bilinear
senet154,9.4667,90.5333,26.44,73.56,115.09,224,0.875,bilinear
efficientnet_b3a,9.2533,90.7467,28.4267,71.5733,12.23,320,1.0,bicubic
efficientnet_b3,8.9733,91.0267,28.2267,71.7733,12.23,300,0.904,bicubic
inception_v4,8.8933,91.1067,24.68,75.32,42.68,299,0.875,bicubic
gluon_seresnext101_64x4d,8.8667,91.1333,27.28,72.72,88.23,224,0.875,bicubic
gluon_xception65,8.44,91.56,25.12,74.88,39.92,299,0.875,bicubic
gluon_resnet152_v1d,8.36,91.64,23.4267,76.5733,60.21,224,0.875,bicubic
inception_resnet_v2,8.1733,91.8267,23.5733,76.4267,55.84,299,0.8975,bicubic
tf_efficientnet_b3_ap,8.1067,91.8933,26.28,73.72,12.23,300,0.904,bicubic
gluon_seresnext101_32x4d,8.04,91.96,24.6933,75.3067,48.96,224,0.875,bicubic
tf_efficientnet_b3,8.0133,91.9867,25.48,74.52,12.23,300,0.904,bicubic
ens_adv_inception_resnet_v2,7.9733,92.0267,23.8667,76.1333,55.84,299,0.8975,bicubic
gluon_resnet152_v1s,7.8533,92.1467,23.1867,76.8133,60.32,224,0.875,bicubic
gluon_resnext101_64x4d,7.72,92.28,23.3067,76.6933,83.46,224,0.875,bicubic
ssl_resnet50,7.04,92.96,23.9067,76.0933,25.56,224,0.875,bilinear
efficientnet_b2a,6.7467,93.2533,23.5067,76.4933,9.11,288,1.0,bicubic
seresnext101_32x4d,6.4,93.6,21.4933,78.5067,48.96,224,0.875,bilinear
efficientnet_b2,6.0933,93.9067,21.96,78.04,9.11,260,0.875,bicubic
gluon_resnext101_32x4d,6.0133,93.9867,21.12,78.88,44.18,224,0.875,bicubic
gluon_resnet101_v1d,5.92,94.08,19.9467,80.0533,44.57,224,0.875,bicubic
gluon_seresnext50_32x4d,5.7867,94.2133,21.4533,78.5467,27.56,224,0.875,bicubic
gluon_inception_v3,5.5067,94.4933,20.0,80.0,23.83,299,0.875,bicubic
mixnet_xl,5.4667,94.5333,21.08,78.92,11.9,224,0.875,bicubic
gluon_resnet101_v1s,5.28,94.72,19.56,80.44,44.67,224,0.875,bicubic
hrnet_w64,5.16,94.84,19.4933,80.5067,128.06,224,0.875,bilinear
dpn107,4.8933,95.1067,17.6133,82.3867,86.92,224,0.875,bicubic
gluon_resnet152_v1c,4.8667,95.1333,17.72,82.28,60.21,224,0.875,bicubic
dla102x2,4.7467,95.2533,18.9067,81.0933,41.75,224,0.875,bilinear
tf_inception_v3,4.7467,95.2533,17.7733,82.2267,23.83,299,0.875,bicubic
adv_inception_v3,4.7333,95.2667,17.56,82.44,23.83,299,0.875,bicubic
hrnet_w48,4.72,95.28,18.4133,81.5867,77.47,224,0.875,bilinear
dpn131,4.6533,95.3467,16.8533,83.1467,79.25,224,0.875,bicubic
gluon_resnet152_v1b,4.5867,95.4133,16.5333,83.4667,60.19,224,0.875,bicubic
dpn92,4.5067,95.4933,18.2133,81.7867,37.67,224,0.875,bicubic
hrnet_w44,4.4933,95.5067,17.36,82.64,67.06,224,0.875,bilinear
resnext50d_32x4d,4.36,95.64,17.7867,82.2133,25.05,224,0.875,bicubic
xception,4.3333,95.6667,16.7867,83.2133,22.86,299,0.8975,bicubic
seresnext50_32x4d,4.28,95.72,17.8133,82.1867,27.56,224,0.875,bilinear
tf_efficientnet_cc_b1_8e,4.24,95.76,15.9467,84.0533,39.72,240,0.882,bicubic
tf_efficientnet_el,4.2267,95.7733,18.1867,81.8133,10.59,300,0.904,bicubic
inception_v3,4.1867,95.8133,16.2933,83.7067,27.16,299,0.875,bicubic
tf_efficientnet_b2_ap,4.16,95.84,18.3467,81.6533,9.11,260,0.89,bicubic
seresnet152,4.1467,95.8533,15.9333,84.0667,66.82,224,0.875,bilinear
resnext101_32x8d,4.1333,95.8667,16.92,83.08,88.79,224,0.875,bilinear
dpn98,4.08,95.92,15.96,84.04,61.57,224,0.875,bicubic
res2net101_26w_4s,4.0,96.0,14.8667,85.1333,45.21,224,0.875,bilinear
efficientnet_b1,3.9733,96.0267,15.7733,84.2267,7.79,240,0.875,bicubic
tf_efficientnet_b2,3.76,96.24,16.5867,83.4133,9.11,260,0.89,bicubic
hrnet_w30,3.68,96.32,15.5733,84.4267,37.71,224,0.875,bilinear
hrnet_w32,3.64,96.36,14.8133,85.1867,41.23,224,0.875,bilinear
seresnext26t_32x4d,3.64,96.36,15.9467,84.0533,16.82,224,0.875,bicubic
hrnet_w40,3.6133,96.3867,15.4267,84.5733,57.56,224,0.875,bilinear
tf_efficientnet_b1_ap,3.5467,96.4533,15.0533,84.9467,7.79,240,0.882,bicubic
dla169,3.4933,96.5067,15.36,84.64,53.99,224,0.875,bilinear
seresnext26tn_32x4d,3.4933,96.5067,15.7733,84.2267,16.81,224,0.875,bicubic
gluon_resnext50_32x4d,3.44,96.56,16.04,83.96,25.03,224,0.875,bicubic
mixnet_l,3.4267,96.5733,15.3067,84.6933,7.33,224,0.875,bicubic
seresnext26d_32x4d,3.4,96.6,16.1867,83.8133,16.81,224,0.875,bicubic
res2net50_26w_8s,3.3333,96.6667,13.9867,86.0133,48.4,224,0.875,bilinear
gluon_resnet101_v1c,3.32,96.68,14.12,85.88,44.57,224,0.875,bicubic
dla102x,3.28,96.72,15.16,84.84,26.77,224,0.875,bilinear
seresnet101,3.2533,96.7467,15.4533,84.5467,49.33,224,0.875,bilinear
dla60_res2next,3.0533,96.9467,14.4533,85.5467,17.33,224,0.875,bilinear
gluon_resnet50_v1d,3.0267,96.9733,14.6667,85.3333,25.58,224,0.875,bicubic
wide_resnet101_2,2.9467,97.0533,13.9733,86.0267,126.89,224,0.875,bilinear
gluon_resnet50_v1s,2.88,97.12,13.1067,86.8933,25.68,224,0.875,bicubic
res2net50_26w_6s,2.8533,97.1467,12.6133,87.3867,37.05,224,0.875,bilinear
tf_efficientnet_b1,2.8533,97.1467,13.48,86.52,7.79,240,0.882,bicubic
efficientnet_b0,2.8267,97.1733,13.8933,86.1067,5.29,224,0.875,bicubic
tf_mixnet_l,2.8133,97.1867,13.0533,86.9467,7.33,224,0.875,bicubic
dpn68b,2.7067,97.2933,12.6933,87.3067,12.61,224,0.875,bicubic
selecsls60b,2.7067,97.2933,13.2267,86.7733,32.77,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,2.68,97.32,12.7867,87.2133,24.01,224,0.875,bicubic
dla60_res2net,2.64,97.36,14.1733,85.8267,21.15,224,0.875,bilinear
gluon_resnet101_v1b,2.6133,97.3867,13.56,86.44,44.55,224,0.875,bicubic
dla60x,2.6,97.4,13.3467,86.6533,17.65,224,0.875,bilinear
mixnet_m,2.5467,97.4533,12.4133,87.5867,5.01,224,0.875,bicubic
resnet152,2.36,97.64,12.2,87.8,60.19,224,0.875,bilinear
swsl_resnet18,2.3467,97.6533,11.2267,88.7733,11.69,224,0.875,bilinear
wide_resnet50_2,2.32,97.68,11.8267,88.1733,68.88,224,0.875,bilinear
hrnet_w18,2.28,97.72,11.84,88.16,21.3,224,0.875,bilinear
seresnext26_32x4d,2.28,97.72,12.44,87.56,16.79,224,0.875,bicubic
dla102,2.2667,97.7333,12.1467,87.8533,33.73,224,0.875,bilinear
resnet50,2.2133,97.7867,11.3067,88.6933,25.56,224,0.875,bicubic
resnext50_32x4d,2.12,97.88,12.3067,87.6933,25.03,224,0.875,bicubic
selecsls60,2.1067,97.8933,12.8533,87.1467,30.67,224,0.875,bicubic
tf_efficientnet_cc_b0_4e,2.0933,97.9067,10.9867,89.0133,13.31,224,0.875,bicubic
res2next50,2.0667,97.9333,11.4133,88.5867,24.67,224,0.875,bilinear
seresnet50,2.0667,97.9333,12.2667,87.7333,28.09,224,0.875,bilinear
densenet161,1.9733,98.0267,10.5733,89.4267,28.68,224,0.875,bicubic
tf_efficientnet_b0_ap,1.96,98.04,10.8,89.2,5.29,224,0.875,bicubic
tf_mixnet_m,1.84,98.16,10.56,89.44,5.01,224,0.875,bicubic
tf_efficientnet_em,1.8133,98.1867,11.6,88.4,6.9,240,0.882,bicubic
res2net50_14w_8s,1.8,98.2,10.3467,89.6533,25.06,224,0.875,bilinear
res2net50_26w_4s,1.7733,98.2267,10.4267,89.5733,25.7,224,0.875,bilinear
tf_efficientnet_b0,1.6933,98.3067,9.7467,90.2533,5.29,224,0.875,bicubic
tv_resnext50_32x4d,1.6933,98.3067,10.6,89.4,25.03,224,0.875,bilinear
resnet101,1.6667,98.3333,9.8,90.2,44.55,224,0.875,bilinear
mobilenetv3_rw,1.6533,98.3467,10.7333,89.2667,5.48,224,0.875,bicubic
mixnet_s,1.5867,98.4133,10.24,89.76,4.13,224,0.875,bicubic
densenet201,1.5467,98.4533,9.6267,90.3733,20.01,224,0.875,bicubic
semnasnet_100,1.5467,98.4533,9.28,90.72,3.89,224,0.875,bicubic
gluon_resnet50_v1c,1.5333,98.4667,10.6533,89.3467,25.58,224,0.875,bicubic
selecsls42b,1.44,98.56,10.4533,89.5467,32.46,224,0.875,bicubic
ssl_resnet18,1.3867,98.6133,8.2,91.8,11.69,224,0.875,bilinear
dla60,1.3333,98.6667,9.4667,90.5333,22.33,224,0.875,bilinear
dpn68,1.32,98.68,8.8267,91.1733,12.61,224,0.875,bicubic
res2net50_48w_2s,1.2933,98.7067,8.9333,91.0667,25.29,224,0.875,bilinear
tf_mixnet_s,1.2667,98.7333,8.7467,91.2533,4.13,224,0.875,bicubic
fbnetc_100,1.24,98.76,8.76,91.24,5.57,224,0.875,bilinear
resnet26d,1.24,98.76,9.32,90.68,16.01,224,0.875,bicubic
tf_mobilenetv3_large_100,1.1867,98.8133,7.9467,92.0533,5.48,224,0.875,bilinear
densenet169,1.1733,98.8267,8.3067,91.6933,14.15,224,0.875,bicubic
gluon_resnet50_v1b,1.16,98.84,9.08,90.92,25.56,224,0.875,bicubic
seresnet34,1.12,98.88,7.4267,92.5733,21.96,224,0.875,bilinear
tf_efficientnet_es,1.12,98.88,8.5867,91.4133,5.44,224,0.875,bicubic
spnasnet_100,1.1067,98.8933,8.2133,91.7867,4.42,224,0.875,bilinear
dla34,1.08,98.92,7.68,92.32,15.78,224,0.875,bilinear
resnet34,1.0,99.0,7.5333,92.4667,21.8,224,0.875,bilinear
gluon_resnet34_v1b,0.8933,99.1067,6.6,93.4,21.8,224,0.875,bicubic
hrnet_w18_small_v2,0.8933,99.1067,7.3867,92.6133,15.6,224,0.875,bilinear
tf_mobilenetv3_large_075,0.88,99.12,6.72,93.28,3.99,224,0.875,bilinear
mnasnet_100,0.8667,99.1333,7.8267,92.1733,4.38,224,0.875,bicubic
tf_mobilenetv3_small_100,0.7467,99.2533,4.6667,95.3333,2.54,224,0.875,bilinear
seresnet18,0.7333,99.2667,6.0267,93.9733,11.78,224,0.875,bicubic
densenet121,0.68,99.32,6.8933,93.1067,7.98,224,0.875,bicubic
tf_mobilenetv3_small_075,0.6533,99.3467,4.1867,95.8133,2.04,224,0.875,bilinear
tv_resnet34,0.6,99.4,5.5333,94.4667,21.8,224,0.875,bilinear
resnet26,0.5867,99.4133,6.8933,93.1067,16.0,224,0.875,bicubic
dla46_c,0.52,99.48,4.1733,95.8267,1.31,224,0.875,bilinear
dla60x_c,0.48,99.52,5.2133,94.7867,1.34,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,0.48,99.52,4.88,95.12,3.92,224,0.875,bilinear
hrnet_w18_small,0.4533,99.5467,4.84,95.16,13.19,224,0.875,bilinear
dla46x_c,0.4133,99.5867,4.44,95.56,1.08,224,0.875,bilinear
gluon_resnet18_v1b,0.3867,99.6133,4.7867,95.2133,11.69,224,0.875,bicubic
tf_mobilenetv3_small_minimal_100,0.36,99.64,2.8667,97.1333,2.04,224,0.875,bilinear
resnet18,0.2933,99.7067,4.04,95.96,11.69,224,0.875,bilinear
tv_resnet50,0.0,100.0,2.9067,97.0933,25.56,224,0.875,bilinear
1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d 41.56 58.44 66.5467 33.4533 828.41 224 0.875 bilinear
3 ig_resnext101_32x32d 39.4267 60.5733 63.7867 36.2133 468.53 224 0.875 bilinear
4 ig_resnext101_32x16d 36.0 64.0 59.0 41.0 194.03 224 0.875 bilinear
5 swsl_resnext101_32x8d 32.0133 67.9867 59.44 40.56 88.79 224 0.875 bilinear
6 tf_efficientnet_b8_ap 29.5867 70.4133 56.9333 43.0667 87.41 672 0.954 bicubic
7 tf_efficientnet_b8 29.3867 70.6133 57.0533 42.9467 87.41 672 0.954 bicubic
8 ig_resnext101_32x8d 28.6667 71.3333 52.32 47.68 88.79 224 0.875 bilinear
9 swsl_resnext101_32x16d 27.9467 72.0533 52.2933 47.7067 194.03 224 0.875 bilinear
10 tf_efficientnet_b7_ap 27.8267 72.1733 54.7733 45.2267 66.35 600 0.949 bicubic
11 swsl_resnext101_32x4d 25.3067 74.6933 49.6267 50.3733 44.18 224 0.875 bilinear
12 tf_efficientnet_b7 25.28 74.72 51.6667 48.3333 66.35 600 0.949 bicubic
13 tf_efficientnet_b6_ap 24.3467 75.6533 50.44 49.56 43.04 528 0.942 bicubic
14 tf_efficientnet_b6 20.3733 79.6267 45.48 54.52 43.04 528 0.942 bicubic
15 tf_efficientnet_b5_ap 19.4667 80.5333 44.7333 55.2667 30.39 456 0.934 bicubic
16 swsl_resnext50_32x4d 18.04 81.96 41.9733 58.0267 25.03 224 0.875 bilinear
17 ssl_resnext101_32x16d 17.1867 82.8133 39.9333 60.0667 194.03 224 0.875 bilinear
18 tf_efficientnet_b5 17.0533 82.9467 41.92 58.08 30.39 456 0.934 bicubic
19 swsl_resnet50 15.9467 84.0533 38.8533 61.1467 25.56 224 0.875 bilinear
20 ssl_resnext101_32x8d 15.12 84.88 37.6933 62.3067 88.79 224 0.875 bilinear
21 tf_efficientnet_b4_ap 13.6667 86.3333 35.9467 64.0533 19.34 380 0.922 bicubic
22 tf_efficientnet_b4 13.32 86.68 35.5333 64.4667 19.34 380 0.922 bicubic
23 pnasnet5large 13.0533 86.9467 32.2267 67.7733 86.06 331 0.875 bicubic
24 nasnetalarge 12.56 87.44 33.4267 66.5733 88.75 331 0.875 bicubic
25 ssl_resnext101_32x4d 12.1067 87.8933 31.8933 68.1067 44.18 224 0.875 bilinear
26 gluon_senet154 9.8933 90.1067 26.4267 73.5733 115.09 224 0.875 bicubic
27 ssl_resnext50_32x4d 9.6533 90.3467 28.4667 71.5333 25.03 224 0.875 bilinear
28 senet154 9.4667 90.5333 26.44 73.56 115.09 224 0.875 bilinear
29 efficientnet_b3a 9.2533 90.7467 28.4267 71.5733 12.23 320 1.0 bicubic
30 efficientnet_b3 8.9733 91.0267 28.2267 71.7733 12.23 300 0.904 bicubic
31 inception_v4 8.8933 91.1067 24.68 75.32 42.68 299 0.875 bicubic
32 gluon_seresnext101_64x4d 8.8667 91.1333 27.28 72.72 88.23 224 0.875 bicubic
33 gluon_xception65 8.44 91.56 25.12 74.88 39.92 299 0.875 bicubic
34 gluon_resnet152_v1d 8.36 91.64 23.4267 76.5733 60.21 224 0.875 bicubic
35 inception_resnet_v2 8.1733 91.8267 23.5733 76.4267 55.84 299 0.8975 bicubic
36 tf_efficientnet_b3_ap 8.1067 91.8933 26.28 73.72 12.23 300 0.904 bicubic
37 gluon_seresnext101_32x4d 8.04 91.96 24.6933 75.3067 48.96 224 0.875 bicubic
38 tf_efficientnet_b3 8.0133 91.9867 25.48 74.52 12.23 300 0.904 bicubic
39 ens_adv_inception_resnet_v2 7.9733 92.0267 23.8667 76.1333 55.84 299 0.8975 bicubic
40 gluon_resnet152_v1s 7.8533 92.1467 23.1867 76.8133 60.32 224 0.875 bicubic
41 gluon_resnext101_64x4d 7.72 92.28 23.3067 76.6933 83.46 224 0.875 bicubic
42 ssl_resnet50 7.04 92.96 23.9067 76.0933 25.56 224 0.875 bilinear
43 efficientnet_b2a 6.7467 93.2533 23.5067 76.4933 9.11 288 1.0 bicubic
44 seresnext101_32x4d 6.4 93.6 21.4933 78.5067 48.96 224 0.875 bilinear
45 efficientnet_b2 6.0933 93.9067 21.96 78.04 9.11 260 0.875 bicubic
46 gluon_resnext101_32x4d 6.0133 93.9867 21.12 78.88 44.18 224 0.875 bicubic
47 gluon_resnet101_v1d 5.92 94.08 19.9467 80.0533 44.57 224 0.875 bicubic
48 gluon_seresnext50_32x4d 5.7867 94.2133 21.4533 78.5467 27.56 224 0.875 bicubic
49 gluon_inception_v3 5.5067 94.4933 20.0 80.0 23.83 299 0.875 bicubic
50 mixnet_xl 5.4667 94.5333 21.08 78.92 11.9 224 0.875 bicubic
51 gluon_resnet101_v1s 5.28 94.72 19.56 80.44 44.67 224 0.875 bicubic
52 hrnet_w64 5.16 94.84 19.4933 80.5067 128.06 224 0.875 bilinear
53 dpn107 4.8933 95.1067 17.6133 82.3867 86.92 224 0.875 bicubic
54 gluon_resnet152_v1c 4.8667 95.1333 17.72 82.28 60.21 224 0.875 bicubic
55 dla102x2 4.7467 95.2533 18.9067 81.0933 41.75 224 0.875 bilinear
56 tf_inception_v3 4.7467 95.2533 17.7733 82.2267 23.83 299 0.875 bicubic
57 adv_inception_v3 4.7333 95.2667 17.56 82.44 23.83 299 0.875 bicubic
58 hrnet_w48 4.72 95.28 18.4133 81.5867 77.47 224 0.875 bilinear
59 dpn131 4.6533 95.3467 16.8533 83.1467 79.25 224 0.875 bicubic
60 gluon_resnet152_v1b 4.5867 95.4133 16.5333 83.4667 60.19 224 0.875 bicubic
61 dpn92 4.5067 95.4933 18.2133 81.7867 37.67 224 0.875 bicubic
62 hrnet_w44 4.4933 95.5067 17.36 82.64 67.06 224 0.875 bilinear
63 resnext50d_32x4d 4.36 95.64 17.7867 82.2133 25.05 224 0.875 bicubic
64 xception 4.3333 95.6667 16.7867 83.2133 22.86 299 0.8975 bicubic
65 seresnext50_32x4d 4.28 95.72 17.8133 82.1867 27.56 224 0.875 bilinear
66 tf_efficientnet_cc_b1_8e 4.24 95.76 15.9467 84.0533 39.72 240 0.882 bicubic
67 tf_efficientnet_el 4.2267 95.7733 18.1867 81.8133 10.59 300 0.904 bicubic
68 inception_v3 4.1867 95.8133 16.2933 83.7067 27.16 299 0.875 bicubic
69 tf_efficientnet_b2_ap 4.16 95.84 18.3467 81.6533 9.11 260 0.89 bicubic
70 seresnet152 4.1467 95.8533 15.9333 84.0667 66.82 224 0.875 bilinear
71 resnext101_32x8d 4.1333 95.8667 16.92 83.08 88.79 224 0.875 bilinear
72 dpn98 4.08 95.92 15.96 84.04 61.57 224 0.875 bicubic
73 res2net101_26w_4s 4.0 96.0 14.8667 85.1333 45.21 224 0.875 bilinear
74 efficientnet_b1 3.9733 96.0267 15.7733 84.2267 7.79 240 0.875 bicubic
75 tf_efficientnet_b2 3.76 96.24 16.5867 83.4133 9.11 260 0.89 bicubic
76 hrnet_w30 3.68 96.32 15.5733 84.4267 37.71 224 0.875 bilinear
77 hrnet_w32 3.64 96.36 14.8133 85.1867 41.23 224 0.875 bilinear
78 seresnext26t_32x4d 3.64 96.36 15.9467 84.0533 16.82 224 0.875 bicubic
79 hrnet_w40 3.6133 96.3867 15.4267 84.5733 57.56 224 0.875 bilinear
80 tf_efficientnet_b1_ap 3.5467 96.4533 15.0533 84.9467 7.79 240 0.882 bicubic
81 dla169 3.4933 96.5067 15.36 84.64 53.99 224 0.875 bilinear
82 seresnext26tn_32x4d 3.4933 96.5067 15.7733 84.2267 16.81 224 0.875 bicubic
83 gluon_resnext50_32x4d 3.44 96.56 16.04 83.96 25.03 224 0.875 bicubic
84 mixnet_l 3.4267 96.5733 15.3067 84.6933 7.33 224 0.875 bicubic
85 seresnext26d_32x4d 3.4 96.6 16.1867 83.8133 16.81 224 0.875 bicubic
86 res2net50_26w_8s 3.3333 96.6667 13.9867 86.0133 48.4 224 0.875 bilinear
87 gluon_resnet101_v1c 3.32 96.68 14.12 85.88 44.57 224 0.875 bicubic
88 dla102x 3.28 96.72 15.16 84.84 26.77 224 0.875 bilinear
89 seresnet101 3.2533 96.7467 15.4533 84.5467 49.33 224 0.875 bilinear
90 dla60_res2next 3.0533 96.9467 14.4533 85.5467 17.33 224 0.875 bilinear
91 gluon_resnet50_v1d 3.0267 96.9733 14.6667 85.3333 25.58 224 0.875 bicubic
92 wide_resnet101_2 2.9467 97.0533 13.9733 86.0267 126.89 224 0.875 bilinear
93 gluon_resnet50_v1s 2.88 97.12 13.1067 86.8933 25.68 224 0.875 bicubic
94 res2net50_26w_6s 2.8533 97.1467 12.6133 87.3867 37.05 224 0.875 bilinear
95 tf_efficientnet_b1 2.8533 97.1467 13.48 86.52 7.79 240 0.882 bicubic
96 efficientnet_b0 2.8267 97.1733 13.8933 86.1067 5.29 224 0.875 bicubic
97 tf_mixnet_l 2.8133 97.1867 13.0533 86.9467 7.33 224 0.875 bicubic
98 dpn68b 2.7067 97.2933 12.6933 87.3067 12.61 224 0.875 bicubic
99 selecsls60b 2.7067 97.2933 13.2267 86.7733 32.77 224 0.875 bicubic
100 tf_efficientnet_cc_b0_8e 2.68 97.32 12.7867 87.2133 24.01 224 0.875 bicubic
101 dla60_res2net 2.64 97.36 14.1733 85.8267 21.15 224 0.875 bilinear
102 gluon_resnet101_v1b 2.6133 97.3867 13.56 86.44 44.55 224 0.875 bicubic
103 dla60x 2.6 97.4 13.3467 86.6533 17.65 224 0.875 bilinear
104 mixnet_m 2.5467 97.4533 12.4133 87.5867 5.01 224 0.875 bicubic
105 resnet152 2.36 97.64 12.2 87.8 60.19 224 0.875 bilinear
106 swsl_resnet18 2.3467 97.6533 11.2267 88.7733 11.69 224 0.875 bilinear
107 wide_resnet50_2 2.32 97.68 11.8267 88.1733 68.88 224 0.875 bilinear
108 hrnet_w18 2.28 97.72 11.84 88.16 21.3 224 0.875 bilinear
109 seresnext26_32x4d 2.28 97.72 12.44 87.56 16.79 224 0.875 bicubic
110 dla102 2.2667 97.7333 12.1467 87.8533 33.73 224 0.875 bilinear
111 resnet50 2.2133 97.7867 11.3067 88.6933 25.56 224 0.875 bicubic
112 resnext50_32x4d 2.12 97.88 12.3067 87.6933 25.03 224 0.875 bicubic
113 selecsls60 2.1067 97.8933 12.8533 87.1467 30.67 224 0.875 bicubic
114 tf_efficientnet_cc_b0_4e 2.0933 97.9067 10.9867 89.0133 13.31 224 0.875 bicubic
115 res2next50 2.0667 97.9333 11.4133 88.5867 24.67 224 0.875 bilinear
116 seresnet50 2.0667 97.9333 12.2667 87.7333 28.09 224 0.875 bilinear
117 densenet161 1.9733 98.0267 10.5733 89.4267 28.68 224 0.875 bicubic
118 tf_efficientnet_b0_ap 1.96 98.04 10.8 89.2 5.29 224 0.875 bicubic
119 tf_mixnet_m 1.84 98.16 10.56 89.44 5.01 224 0.875 bicubic
120 tf_efficientnet_em 1.8133 98.1867 11.6 88.4 6.9 240 0.882 bicubic
121 res2net50_14w_8s 1.8 98.2 10.3467 89.6533 25.06 224 0.875 bilinear
122 res2net50_26w_4s 1.7733 98.2267 10.4267 89.5733 25.7 224 0.875 bilinear
123 tf_efficientnet_b0 1.6933 98.3067 9.7467 90.2533 5.29 224 0.875 bicubic
124 tv_resnext50_32x4d 1.6933 98.3067 10.6 89.4 25.03 224 0.875 bilinear
125 resnet101 1.6667 98.3333 9.8 90.2 44.55 224 0.875 bilinear
126 mobilenetv3_rw 1.6533 98.3467 10.7333 89.2667 5.48 224 0.875 bicubic
127 mixnet_s 1.5867 98.4133 10.24 89.76 4.13 224 0.875 bicubic
128 densenet201 1.5467 98.4533 9.6267 90.3733 20.01 224 0.875 bicubic
129 semnasnet_100 1.5467 98.4533 9.28 90.72 3.89 224 0.875 bicubic
130 gluon_resnet50_v1c 1.5333 98.4667 10.6533 89.3467 25.58 224 0.875 bicubic
131 selecsls42b 1.44 98.56 10.4533 89.5467 32.46 224 0.875 bicubic
132 ssl_resnet18 1.3867 98.6133 8.2 91.8 11.69 224 0.875 bilinear
133 dla60 1.3333 98.6667 9.4667 90.5333 22.33 224 0.875 bilinear
134 dpn68 1.32 98.68 8.8267 91.1733 12.61 224 0.875 bicubic
135 res2net50_48w_2s 1.2933 98.7067 8.9333 91.0667 25.29 224 0.875 bilinear
136 tf_mixnet_s 1.2667 98.7333 8.7467 91.2533 4.13 224 0.875 bicubic
137 fbnetc_100 1.24 98.76 8.76 91.24 5.57 224 0.875 bilinear
138 resnet26d 1.24 98.76 9.32 90.68 16.01 224 0.875 bicubic
139 tf_mobilenetv3_large_100 1.1867 98.8133 7.9467 92.0533 5.48 224 0.875 bilinear
140 densenet169 1.1733 98.8267 8.3067 91.6933 14.15 224 0.875 bicubic
141 gluon_resnet50_v1b 1.16 98.84 9.08 90.92 25.56 224 0.875 bicubic
142 seresnet34 1.12 98.88 7.4267 92.5733 21.96 224 0.875 bilinear
143 tf_efficientnet_es 1.12 98.88 8.5867 91.4133 5.44 224 0.875 bicubic
144 spnasnet_100 1.1067 98.8933 8.2133 91.7867 4.42 224 0.875 bilinear
145 dla34 1.08 98.92 7.68 92.32 15.78 224 0.875 bilinear
146 resnet34 1.0 99.0 7.5333 92.4667 21.8 224 0.875 bilinear
147 gluon_resnet34_v1b 0.8933 99.1067 6.6 93.4 21.8 224 0.875 bicubic
148 hrnet_w18_small_v2 0.8933 99.1067 7.3867 92.6133 15.6 224 0.875 bilinear
149 tf_mobilenetv3_large_075 0.88 99.12 6.72 93.28 3.99 224 0.875 bilinear
150 mnasnet_100 0.8667 99.1333 7.8267 92.1733 4.38 224 0.875 bicubic
151 tf_mobilenetv3_small_100 0.7467 99.2533 4.6667 95.3333 2.54 224 0.875 bilinear
152 seresnet18 0.7333 99.2667 6.0267 93.9733 11.78 224 0.875 bicubic
153 densenet121 0.68 99.32 6.8933 93.1067 7.98 224 0.875 bicubic
154 tf_mobilenetv3_small_075 0.6533 99.3467 4.1867 95.8133 2.04 224 0.875 bilinear
155 tv_resnet34 0.6 99.4 5.5333 94.4667 21.8 224 0.875 bilinear
156 resnet26 0.5867 99.4133 6.8933 93.1067 16.0 224 0.875 bicubic
157 dla46_c 0.52 99.48 4.1733 95.8267 1.31 224 0.875 bilinear
158 dla60x_c 0.48 99.52 5.2133 94.7867 1.34 224 0.875 bilinear
159 tf_mobilenetv3_large_minimal_100 0.48 99.52 4.88 95.12 3.92 224 0.875 bilinear
160 hrnet_w18_small 0.4533 99.5467 4.84 95.16 13.19 224 0.875 bilinear
161 dla46x_c 0.4133 99.5867 4.44 95.56 1.08 224 0.875 bilinear
162 gluon_resnet18_v1b 0.3867 99.6133 4.7867 95.2133 11.69 224 0.875 bicubic
163 tf_mobilenetv3_small_minimal_100 0.36 99.64 2.8667 97.1333 2.04 224 0.875 bilinear
164 resnet18 0.2933 99.7067 4.04 95.96 11.69 224 0.875 bilinear
165 tv_resnet50 0.0 100.0 2.9067 97.0933 25.56 224 0.875 bilinear

@ -0,0 +1,165 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,85.428,14.572,97.572,2.428,828.41,224,0.875,bilinear
tf_efficientnet_b8,85.37,14.63,97.39,2.61,87.41,672,0.954,bicubic
tf_efficientnet_b8_ap,85.37,14.63,97.294,2.706,87.41,672,0.954,bicubic
tf_efficientnet_b7_ap,85.12,14.88,97.252,2.748,66.35,600,0.949,bicubic
ig_resnext101_32x32d,85.094,14.906,97.438,2.562,468.53,224,0.875,bilinear
tf_efficientnet_b7,84.936,15.064,97.204,2.796,66.35,600,0.949,bicubic
tf_efficientnet_b6_ap,84.788,15.212,97.138,2.862,43.04,528,0.942,bicubic
swsl_resnext101_32x8d,84.284,15.716,97.176,2.824,88.79,224,0.875,bilinear
tf_efficientnet_b5_ap,84.252,15.748,96.974,3.026,30.39,456,0.934,bicubic
ig_resnext101_32x16d,84.17,15.83,97.196,2.804,194.03,224,0.875,bilinear
tf_efficientnet_b6,84.11,15.89,96.886,3.114,43.04,528,0.942,bicubic
tf_efficientnet_b5,83.812,16.188,96.748,3.252,30.39,456,0.934,bicubic
swsl_resnext101_32x16d,83.346,16.654,96.846,3.154,194.03,224,0.875,bilinear
tf_efficientnet_b4_ap,83.248,16.752,96.392,3.608,19.34,380,0.922,bicubic
swsl_resnext101_32x4d,83.23,16.77,96.76,3.24,44.18,224,0.875,bilinear
tf_efficientnet_b4,83.022,16.978,96.3,3.7,19.34,380,0.922,bicubic
pnasnet5large,82.736,17.264,96.046,3.954,86.06,331,0.875,bicubic
ig_resnext101_32x8d,82.688,17.312,96.636,3.364,88.79,224,0.875,bilinear
nasnetalarge,82.554,17.446,96.038,3.962,88.75,331,0.875,bicubic
swsl_resnext50_32x4d,82.182,17.818,96.23,3.77,25.03,224,0.875,bilinear
efficientnet_b3a,81.866,18.134,95.836,4.164,12.23,320,1,bicubic
ssl_resnext101_32x16d,81.844,18.156,96.096,3.904,194.03,224,0.875,bilinear
tf_efficientnet_b3_ap,81.822,18.178,95.624,4.376,12.23,300,0.904,bicubic
tf_efficientnet_b3,81.636,18.364,95.718,4.282,12.23,300,0.904,bicubic
ssl_resnext101_32x8d,81.616,18.384,96.038,3.962,88.79,224,0.875,bilinear
efficientnet_b3,81.494,18.506,95.716,4.284,12.23,300,0.904,bicubic
senet154,81.31,18.69,95.496,4.504,115.09,224,0.875,bilinear
gluon_senet154,81.234,18.766,95.348,4.652,115.09,224,0.875,bicubic
swsl_resnet50,81.166,18.834,95.972,4.028,25.56,224,0.875,bilinear
gluon_resnet152_v1s,81.016,18.984,95.412,4.588,60.32,224,0.875,bicubic
ssl_resnext101_32x4d,80.924,19.076,95.728,4.272,44.18,224,0.875,bilinear
gluon_seresnext101_32x4d,80.904,19.096,95.294,4.706,48.96,224,0.875,bicubic
gluon_seresnext101_64x4d,80.894,19.106,95.308,4.692,88.23,224,0.875,bicubic
efficientnet_b2a,80.612,19.388,95.318,4.682,9.11,288,1,bicubic
gluon_resnext101_64x4d,80.604,19.396,94.988,5.012,83.46,224,0.875,bicubic
mixnet_xl,80.476,19.524,94.936,5.064,11.9,224,0.875,bicubic
gluon_resnet152_v1d,80.474,19.526,95.206,4.794,60.21,224,0.875,bicubic
inception_resnet_v2,80.458,19.542,95.306,4.694,55.84,299,0.8975,bicubic
tf_efficientnet_el,80.44,19.56,95.164,4.836,10.59,300,0.904,bicubic
gluon_resnet101_v1d,80.414,19.586,95.014,4.986,44.57,224,0.875,bicubic
efficientnet_b2,80.392,19.608,95.076,4.924,9.11,260,0.875,bicubic
gluon_resnext101_32x4d,80.334,19.666,94.926,5.074,44.18,224,0.875,bicubic
ssl_resnext50_32x4d,80.318,19.682,95.406,4.594,25.03,224,0.875,bilinear
gluon_resnet101_v1s,80.302,19.698,95.16,4.84,44.67,224,0.875,bicubic
tf_efficientnet_b2_ap,80.3,19.7,95.028,4.972,9.11,260,0.89,bicubic
seresnext101_32x4d,80.228,19.772,95.018,4.982,48.96,224,0.875,bilinear
inception_v4,80.168,19.832,94.968,5.032,42.68,299,0.875,bicubic
dpn107,80.156,19.844,94.91,5.09,86.92,224,0.875,bicubic
tf_efficientnet_b2,80.086,19.914,94.908,5.092,9.11,260,0.89,bicubic
dpn92,80.008,19.992,94.836,5.164,37.67,224,0.875,bicubic
ens_adv_inception_resnet_v2,79.982,20.018,94.938,5.062,55.84,299,0.8975,bicubic
gluon_seresnext50_32x4d,79.918,20.082,94.822,5.178,27.56,224,0.875,bicubic
gluon_resnet152_v1c,79.91,20.09,94.84,5.16,60.21,224,0.875,bicubic
dpn131,79.822,20.178,94.71,5.29,79.25,224,0.875,bicubic
gluon_resnet152_v1b,79.686,20.314,94.736,5.264,60.19,224,0.875,bicubic
resnext50d_32x4d,79.676,20.324,94.866,5.134,25.05,224,0.875,bicubic
dpn98,79.642,20.358,94.598,5.402,61.57,224,0.875,bicubic
gluon_xception65,79.588,20.412,94.756,5.244,39.92,299,0.875,bicubic
gluon_resnet101_v1c,79.534,20.466,94.578,5.422,44.57,224,0.875,bicubic
hrnet_w64,79.474,20.526,94.652,5.348,128.06,224,0.875,bilinear
dla102x2,79.448,20.552,94.64,5.36,41.75,224,0.875,bilinear
gluon_resnext50_32x4d,79.354,20.646,94.426,5.574,25.03,224,0.875,bicubic
resnext101_32x8d,79.308,20.692,94.518,5.482,88.79,224,0.875,bilinear
tf_efficientnet_cc_b1_8e,79.308,20.692,94.37,5.63,39.72,240,0.882,bicubic
gluon_resnet101_v1b,79.306,20.694,94.524,5.476,44.55,224,0.875,bicubic
hrnet_w48,79.3,20.7,94.512,5.488,77.47,224,0.875,bilinear
tf_efficientnet_b1_ap,79.28,20.72,94.306,5.694,7.79,240,0.882,bicubic
ssl_resnet50,79.222,20.778,94.832,5.168,25.56,224,0.875,bilinear
res2net50_26w_8s,79.198,20.802,94.368,5.632,48.4,224,0.875,bilinear
res2net101_26w_4s,79.198,20.802,94.432,5.568,45.21,224,0.875,bilinear
seresnext50_32x4d,79.078,20.922,94.436,5.564,27.56,224,0.875,bilinear
gluon_resnet50_v1d,79.074,20.926,94.47,5.53,25.58,224,0.875,bicubic
xception,79.052,20.948,94.392,5.608,22.86,299,0.8975,bicubic
resnet50,79.038,20.962,94.39,5.61,25.56,224,0.875,bicubic
mixnet_l,78.976,21.024,94.182,5.818,7.33,224,0.875,bicubic
hrnet_w40,78.92,21.08,94.47,5.53,57.56,224,0.875,bilinear
hrnet_w44,78.896,21.104,94.368,5.632,67.06,224,0.875,bilinear
wide_resnet101_2,78.856,21.144,94.282,5.718,126.89,224,0.875,bilinear
tf_efficientnet_b1,78.826,21.174,94.198,5.802,7.79,240,0.882,bicubic
gluon_inception_v3,78.806,21.194,94.37,5.63,23.83,299,0.875,bicubic
tf_mixnet_l,78.774,21.226,93.998,6.002,7.33,224,0.875,bicubic
gluon_resnet50_v1s,78.712,21.288,94.238,5.762,25.68,224,0.875,bicubic
tf_efficientnet_em,78.708,21.292,94.314,5.686,6.9,240,0.882,bicubic
efficientnet_b1,78.698,21.302,94.144,5.856,7.79,240,0.875,bicubic
dla169,78.688,21.312,94.336,5.664,53.99,224,0.875,bilinear
seresnet152,78.66,21.34,94.37,5.63,66.82,224,0.875,bilinear
res2net50_26w_6s,78.57,21.43,94.124,5.876,37.05,224,0.875,bilinear
resnext50_32x4d,78.512,21.488,94.042,5.958,25.03,224,0.875,bicubic
dla102x,78.51,21.49,94.228,5.772,26.77,224,0.875,bilinear
wide_resnet50_2,78.478,21.522,94.094,5.906,68.88,224,0.875,bilinear
dla60_res2net,78.464,21.536,94.206,5.794,21.15,224,0.875,bilinear
hrnet_w32,78.45,21.55,94.186,5.814,41.23,224,0.875,bilinear
dla60_res2next,78.44,21.56,94.152,5.848,17.33,224,0.875,bilinear
selecsls60b,78.412,21.588,94.174,5.826,32.77,224,0.875,bicubic
seresnet101,78.382,21.618,94.264,5.736,49.33,224,0.875,bilinear
resnet152,78.312,21.688,94.038,5.962,60.19,224,0.875,bilinear
dla60x,78.246,21.754,94.018,5.982,17.65,224,0.875,bilinear
res2next50,78.246,21.754,93.892,6.108,24.67,224,0.875,bilinear
hrnet_w30,78.206,21.794,94.222,5.778,37.71,224,0.875,bilinear
res2net50_14w_8s,78.15,21.85,93.848,6.152,25.06,224,0.875,bilinear
dla102,78.032,21.968,93.946,6.054,33.73,224,0.875,bilinear
gluon_resnet50_v1c,78.012,21.988,93.988,6.012,25.58,224,0.875,bicubic
seresnext26t_32x4d,77.998,22.002,93.708,6.292,16.82,224,0.875,bicubic
seresnext26tn_32x4d,77.986,22.014,93.746,6.254,16.81,224,0.875,bicubic
selecsls60,77.982,22.018,93.828,6.172,30.67,224,0.875,bicubic
res2net50_26w_4s,77.964,22.036,93.854,6.146,25.7,224,0.875,bilinear
tf_efficientnet_cc_b0_8e,77.908,22.092,93.654,6.346,24.01,224,0.875,bicubic
tf_inception_v3,77.86,22.14,93.64,6.36,23.83,299,0.875,bicubic
efficientnet_b0,77.698,22.302,93.532,6.468,5.29,224,0.875,bicubic
seresnet50,77.63,22.37,93.748,6.252,28.09,224,0.875,bilinear
tv_resnext50_32x4d,77.62,22.38,93.696,6.304,25.03,224,0.875,bilinear
seresnext26d_32x4d,77.602,22.398,93.608,6.392,16.81,224,0.875,bicubic
adv_inception_v3,77.582,22.418,93.736,6.264,23.83,299,0.875,bicubic
gluon_resnet50_v1b,77.58,22.42,93.716,6.284,25.56,224,0.875,bicubic
res2net50_48w_2s,77.522,22.478,93.554,6.446,25.29,224,0.875,bilinear
dpn68b,77.512,22.488,93.822,6.178,12.61,224,0.875,bicubic
inception_v3,77.438,22.562,93.474,6.526,27.16,299,0.875,bicubic
resnet101,77.374,22.626,93.54,6.46,44.55,224,0.875,bilinear
densenet161,77.358,22.642,93.638,6.362,28.68,224,0.875,bicubic
tf_efficientnet_cc_b0_4e,77.306,22.694,93.334,6.666,13.31,224,0.875,bicubic
densenet201,77.286,22.714,93.478,6.522,20.01,224,0.875,bicubic
mixnet_m,77.26,22.74,93.424,6.576,5.01,224,0.875,bicubic
tf_efficientnet_es,77.258,22.742,93.594,6.406,5.44,224,0.875,bicubic
selecsls42b,77.174,22.826,93.39,6.61,32.46,224,0.875,bicubic
seresnext26_32x4d,77.104,22.896,93.316,6.684,16.79,224,0.875,bicubic
tf_efficientnet_b0_ap,77.086,22.914,93.256,6.744,5.29,224,0.875,bicubic
dla60,77.032,22.968,93.318,6.682,22.33,224,0.875,bilinear
tf_mixnet_m,76.942,23.058,93.152,6.848,5.01,224,0.875,bicubic
tf_efficientnet_b0,76.848,23.152,93.228,6.772,5.29,224,0.875,bicubic
hrnet_w18,76.758,23.242,93.444,6.556,21.3,224,0.875,bilinear
resnet26d,76.696,23.304,93.15,6.85,16.01,224,0.875,bicubic
dpn68,76.318,23.682,92.978,7.022,12.61,224,0.875,bicubic
tv_resnet50,76.138,23.862,92.864,7.136,25.56,224,0.875,bilinear
mixnet_s,75.992,24.008,92.796,7.204,4.13,224,0.875,bicubic
densenet169,75.906,24.094,93.026,6.974,14.15,224,0.875,bicubic
tf_mixnet_s,75.65,24.35,92.63,7.37,4.13,224,0.875,bicubic
mobilenetv3_rw,75.634,24.366,92.708,7.292,5.48,224,0.875,bicubic
tf_mobilenetv3_large_100,75.518,24.482,92.606,7.394,5.48,224,0.875,bilinear
semnasnet_100,75.448,24.552,92.604,7.396,3.89,224,0.875,bicubic
resnet26,75.292,24.708,92.57,7.43,16,224,0.875,bicubic
fbnetc_100,75.124,24.876,92.386,7.614,5.57,224,0.875,bilinear
hrnet_w18_small_v2,75.114,24.886,92.416,7.584,15.6,224,0.875,bilinear
resnet34,75.11,24.89,92.284,7.716,21.8,224,0.875,bilinear
seresnet34,74.808,25.192,92.124,7.876,21.96,224,0.875,bilinear
densenet121,74.738,25.262,92.15,7.85,7.98,224,0.875,bicubic
mnasnet_100,74.658,25.342,92.114,7.886,4.38,224,0.875,bicubic
dla34,74.63,25.37,92.078,7.922,15.78,224,0.875,bilinear
gluon_resnet34_v1b,74.588,25.412,91.99,8.01,21.8,224,0.875,bicubic
spnasnet_100,74.084,25.916,91.818,8.182,4.42,224,0.875,bilinear
tf_mobilenetv3_large_075,73.438,26.562,91.35,8.65,3.99,224,0.875,bilinear
tv_resnet34,73.312,26.688,91.426,8.574,21.8,224,0.875,bilinear
swsl_resnet18,73.276,26.724,91.734,8.266,11.69,224,0.875,bilinear
ssl_resnet18,72.61,27.39,91.416,8.584,11.69,224,0.875,bilinear
hrnet_w18_small,72.342,27.658,90.678,9.322,13.19,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,72.248,27.752,90.63,9.37,3.92,224,0.875,bilinear
seresnet18,71.742,28.258,90.334,9.666,11.78,224,0.875,bicubic
gluon_resnet18_v1b,70.836,29.164,89.76,10.24,11.69,224,0.875,bicubic
resnet18,69.748,30.252,89.078,10.922,11.69,224,0.875,bilinear
tf_mobilenetv3_small_100,67.922,32.078,87.664,12.336,2.54,224,0.875,bilinear
dla60x_c,67.892,32.108,88.426,11.574,1.34,224,0.875,bilinear
dla46x_c,65.97,34.03,86.98,13.02,1.08,224,0.875,bilinear
tf_mobilenetv3_small_075,65.716,34.284,86.13,13.87,2.04,224,0.875,bilinear
dla46_c,64.866,35.134,86.292,13.708,1.31,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,62.906,37.094,84.23,15.77,2.04,224,0.875,bilinear
1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d 85.428 14.572 97.572 2.428 828.41 224 0.875 bilinear
3 tf_efficientnet_b8 85.37 14.63 97.39 2.61 87.41 672 0.954 bicubic
4 tf_efficientnet_b8_ap 85.37 14.63 97.294 2.706 87.41 672 0.954 bicubic
5 tf_efficientnet_b7_ap 85.12 14.88 97.252 2.748 66.35 600 0.949 bicubic
6 ig_resnext101_32x32d 85.094 14.906 97.438 2.562 468.53 224 0.875 bilinear
7 tf_efficientnet_b7 84.936 15.064 97.204 2.796 66.35 600 0.949 bicubic
8 tf_efficientnet_b6_ap 84.788 15.212 97.138 2.862 43.04 528 0.942 bicubic
9 swsl_resnext101_32x8d 84.284 15.716 97.176 2.824 88.79 224 0.875 bilinear
10 tf_efficientnet_b5_ap 84.252 15.748 96.974 3.026 30.39 456 0.934 bicubic
11 ig_resnext101_32x16d 84.17 15.83 97.196 2.804 194.03 224 0.875 bilinear
12 tf_efficientnet_b6 84.11 15.89 96.886 3.114 43.04 528 0.942 bicubic
13 tf_efficientnet_b5 83.812 16.188 96.748 3.252 30.39 456 0.934 bicubic
14 swsl_resnext101_32x16d 83.346 16.654 96.846 3.154 194.03 224 0.875 bilinear
15 tf_efficientnet_b4_ap 83.248 16.752 96.392 3.608 19.34 380 0.922 bicubic
16 swsl_resnext101_32x4d 83.23 16.77 96.76 3.24 44.18 224 0.875 bilinear
17 tf_efficientnet_b4 83.022 16.978 96.3 3.7 19.34 380 0.922 bicubic
18 pnasnet5large 82.736 17.264 96.046 3.954 86.06 331 0.875 bicubic
19 ig_resnext101_32x8d 82.688 17.312 96.636 3.364 88.79 224 0.875 bilinear
20 nasnetalarge 82.554 17.446 96.038 3.962 88.75 331 0.875 bicubic
21 swsl_resnext50_32x4d 82.182 17.818 96.23 3.77 25.03 224 0.875 bilinear
22 efficientnet_b3a 81.866 18.134 95.836 4.164 12.23 320 1 bicubic
23 ssl_resnext101_32x16d 81.844 18.156 96.096 3.904 194.03 224 0.875 bilinear
24 tf_efficientnet_b3_ap 81.822 18.178 95.624 4.376 12.23 300 0.904 bicubic
25 tf_efficientnet_b3 81.636 18.364 95.718 4.282 12.23 300 0.904 bicubic
26 ssl_resnext101_32x8d 81.616 18.384 96.038 3.962 88.79 224 0.875 bilinear
27 efficientnet_b3 81.494 18.506 95.716 4.284 12.23 300 0.904 bicubic
28 senet154 81.31 18.69 95.496 4.504 115.09 224 0.875 bilinear
29 gluon_senet154 81.234 18.766 95.348 4.652 115.09 224 0.875 bicubic
30 swsl_resnet50 81.166 18.834 95.972 4.028 25.56 224 0.875 bilinear
31 gluon_resnet152_v1s 81.016 18.984 95.412 4.588 60.32 224 0.875 bicubic
32 ssl_resnext101_32x4d 80.924 19.076 95.728 4.272 44.18 224 0.875 bilinear
33 gluon_seresnext101_32x4d 80.904 19.096 95.294 4.706 48.96 224 0.875 bicubic
34 gluon_seresnext101_64x4d 80.894 19.106 95.308 4.692 88.23 224 0.875 bicubic
35 efficientnet_b2a 80.612 19.388 95.318 4.682 9.11 288 1 bicubic
36 gluon_resnext101_64x4d 80.604 19.396 94.988 5.012 83.46 224 0.875 bicubic
37 mixnet_xl 80.476 19.524 94.936 5.064 11.9 224 0.875 bicubic
38 gluon_resnet152_v1d 80.474 19.526 95.206 4.794 60.21 224 0.875 bicubic
39 inception_resnet_v2 80.458 19.542 95.306 4.694 55.84 299 0.8975 bicubic
40 tf_efficientnet_el 80.44 19.56 95.164 4.836 10.59 300 0.904 bicubic
41 gluon_resnet101_v1d 80.414 19.586 95.014 4.986 44.57 224 0.875 bicubic
42 efficientnet_b2 80.392 19.608 95.076 4.924 9.11 260 0.875 bicubic
43 gluon_resnext101_32x4d 80.334 19.666 94.926 5.074 44.18 224 0.875 bicubic
44 ssl_resnext50_32x4d 80.318 19.682 95.406 4.594 25.03 224 0.875 bilinear
45 gluon_resnet101_v1s 80.302 19.698 95.16 4.84 44.67 224 0.875 bicubic
46 tf_efficientnet_b2_ap 80.3 19.7 95.028 4.972 9.11 260 0.89 bicubic
47 seresnext101_32x4d 80.228 19.772 95.018 4.982 48.96 224 0.875 bilinear
48 inception_v4 80.168 19.832 94.968 5.032 42.68 299 0.875 bicubic
49 dpn107 80.156 19.844 94.91 5.09 86.92 224 0.875 bicubic
50 tf_efficientnet_b2 80.086 19.914 94.908 5.092 9.11 260 0.89 bicubic
51 dpn92 80.008 19.992 94.836 5.164 37.67 224 0.875 bicubic
52 ens_adv_inception_resnet_v2 79.982 20.018 94.938 5.062 55.84 299 0.8975 bicubic
53 gluon_seresnext50_32x4d 79.918 20.082 94.822 5.178 27.56 224 0.875 bicubic
54 gluon_resnet152_v1c 79.91 20.09 94.84 5.16 60.21 224 0.875 bicubic
55 dpn131 79.822 20.178 94.71 5.29 79.25 224 0.875 bicubic
56 gluon_resnet152_v1b 79.686 20.314 94.736 5.264 60.19 224 0.875 bicubic
57 resnext50d_32x4d 79.676 20.324 94.866 5.134 25.05 224 0.875 bicubic
58 dpn98 79.642 20.358 94.598 5.402 61.57 224 0.875 bicubic
59 gluon_xception65 79.588 20.412 94.756 5.244 39.92 299 0.875 bicubic
60 gluon_resnet101_v1c 79.534 20.466 94.578 5.422 44.57 224 0.875 bicubic
61 hrnet_w64 79.474 20.526 94.652 5.348 128.06 224 0.875 bilinear
62 dla102x2 79.448 20.552 94.64 5.36 41.75 224 0.875 bilinear
63 gluon_resnext50_32x4d 79.354 20.646 94.426 5.574 25.03 224 0.875 bicubic
64 resnext101_32x8d 79.308 20.692 94.518 5.482 88.79 224 0.875 bilinear
65 tf_efficientnet_cc_b1_8e 79.308 20.692 94.37 5.63 39.72 240 0.882 bicubic
66 gluon_resnet101_v1b 79.306 20.694 94.524 5.476 44.55 224 0.875 bicubic
67 hrnet_w48 79.3 20.7 94.512 5.488 77.47 224 0.875 bilinear
68 tf_efficientnet_b1_ap 79.28 20.72 94.306 5.694 7.79 240 0.882 bicubic
69 ssl_resnet50 79.222 20.778 94.832 5.168 25.56 224 0.875 bilinear
70 res2net50_26w_8s 79.198 20.802 94.368 5.632 48.4 224 0.875 bilinear
71 res2net101_26w_4s 79.198 20.802 94.432 5.568 45.21 224 0.875 bilinear
72 seresnext50_32x4d 79.078 20.922 94.436 5.564 27.56 224 0.875 bilinear
73 gluon_resnet50_v1d 79.074 20.926 94.47 5.53 25.58 224 0.875 bicubic
74 xception 79.052 20.948 94.392 5.608 22.86 299 0.8975 bicubic
75 resnet50 79.038 20.962 94.39 5.61 25.56 224 0.875 bicubic
76 mixnet_l 78.976 21.024 94.182 5.818 7.33 224 0.875 bicubic
77 hrnet_w40 78.92 21.08 94.47 5.53 57.56 224 0.875 bilinear
78 hrnet_w44 78.896 21.104 94.368 5.632 67.06 224 0.875 bilinear
79 wide_resnet101_2 78.856 21.144 94.282 5.718 126.89 224 0.875 bilinear
80 tf_efficientnet_b1 78.826 21.174 94.198 5.802 7.79 240 0.882 bicubic
81 gluon_inception_v3 78.806 21.194 94.37 5.63 23.83 299 0.875 bicubic
82 tf_mixnet_l 78.774 21.226 93.998 6.002 7.33 224 0.875 bicubic
83 gluon_resnet50_v1s 78.712 21.288 94.238 5.762 25.68 224 0.875 bicubic
84 tf_efficientnet_em 78.708 21.292 94.314 5.686 6.9 240 0.882 bicubic
85 efficientnet_b1 78.698 21.302 94.144 5.856 7.79 240 0.875 bicubic
86 dla169 78.688 21.312 94.336 5.664 53.99 224 0.875 bilinear
87 seresnet152 78.66 21.34 94.37 5.63 66.82 224 0.875 bilinear
88 res2net50_26w_6s 78.57 21.43 94.124 5.876 37.05 224 0.875 bilinear
89 resnext50_32x4d 78.512 21.488 94.042 5.958 25.03 224 0.875 bicubic
90 dla102x 78.51 21.49 94.228 5.772 26.77 224 0.875 bilinear
91 wide_resnet50_2 78.478 21.522 94.094 5.906 68.88 224 0.875 bilinear
92 dla60_res2net 78.464 21.536 94.206 5.794 21.15 224 0.875 bilinear
93 hrnet_w32 78.45 21.55 94.186 5.814 41.23 224 0.875 bilinear
94 dla60_res2next 78.44 21.56 94.152 5.848 17.33 224 0.875 bilinear
95 selecsls60b 78.412 21.588 94.174 5.826 32.77 224 0.875 bicubic
96 seresnet101 78.382 21.618 94.264 5.736 49.33 224 0.875 bilinear
97 resnet152 78.312 21.688 94.038 5.962 60.19 224 0.875 bilinear
98 dla60x 78.246 21.754 94.018 5.982 17.65 224 0.875 bilinear
99 res2next50 78.246 21.754 93.892 6.108 24.67 224 0.875 bilinear
100 hrnet_w30 78.206 21.794 94.222 5.778 37.71 224 0.875 bilinear
101 res2net50_14w_8s 78.15 21.85 93.848 6.152 25.06 224 0.875 bilinear
102 dla102 78.032 21.968 93.946 6.054 33.73 224 0.875 bilinear
103 gluon_resnet50_v1c 78.012 21.988 93.988 6.012 25.58 224 0.875 bicubic
104 seresnext26t_32x4d 77.998 22.002 93.708 6.292 16.82 224 0.875 bicubic
105 seresnext26tn_32x4d 77.986 22.014 93.746 6.254 16.81 224 0.875 bicubic
106 selecsls60 77.982 22.018 93.828 6.172 30.67 224 0.875 bicubic
107 res2net50_26w_4s 77.964 22.036 93.854 6.146 25.7 224 0.875 bilinear
108 tf_efficientnet_cc_b0_8e 77.908 22.092 93.654 6.346 24.01 224 0.875 bicubic
109 tf_inception_v3 77.86 22.14 93.64 6.36 23.83 299 0.875 bicubic
110 efficientnet_b0 77.698 22.302 93.532 6.468 5.29 224 0.875 bicubic
111 seresnet50 77.63 22.37 93.748 6.252 28.09 224 0.875 bilinear
112 tv_resnext50_32x4d 77.62 22.38 93.696 6.304 25.03 224 0.875 bilinear
113 seresnext26d_32x4d 77.602 22.398 93.608 6.392 16.81 224 0.875 bicubic
114 adv_inception_v3 77.582 22.418 93.736 6.264 23.83 299 0.875 bicubic
115 gluon_resnet50_v1b 77.58 22.42 93.716 6.284 25.56 224 0.875 bicubic
116 res2net50_48w_2s 77.522 22.478 93.554 6.446 25.29 224 0.875 bilinear
117 dpn68b 77.512 22.488 93.822 6.178 12.61 224 0.875 bicubic
118 inception_v3 77.438 22.562 93.474 6.526 27.16 299 0.875 bicubic
119 resnet101 77.374 22.626 93.54 6.46 44.55 224 0.875 bilinear
120 densenet161 77.358 22.642 93.638 6.362 28.68 224 0.875 bicubic
121 tf_efficientnet_cc_b0_4e 77.306 22.694 93.334 6.666 13.31 224 0.875 bicubic
122 densenet201 77.286 22.714 93.478 6.522 20.01 224 0.875 bicubic
123 mixnet_m 77.26 22.74 93.424 6.576 5.01 224 0.875 bicubic
124 tf_efficientnet_es 77.258 22.742 93.594 6.406 5.44 224 0.875 bicubic
125 selecsls42b 77.174 22.826 93.39 6.61 32.46 224 0.875 bicubic
126 seresnext26_32x4d 77.104 22.896 93.316 6.684 16.79 224 0.875 bicubic
127 tf_efficientnet_b0_ap 77.086 22.914 93.256 6.744 5.29 224 0.875 bicubic
128 dla60 77.032 22.968 93.318 6.682 22.33 224 0.875 bilinear
129 tf_mixnet_m 76.942 23.058 93.152 6.848 5.01 224 0.875 bicubic
130 tf_efficientnet_b0 76.848 23.152 93.228 6.772 5.29 224 0.875 bicubic
131 hrnet_w18 76.758 23.242 93.444 6.556 21.3 224 0.875 bilinear
132 resnet26d 76.696 23.304 93.15 6.85 16.01 224 0.875 bicubic
133 dpn68 76.318 23.682 92.978 7.022 12.61 224 0.875 bicubic
134 tv_resnet50 76.138 23.862 92.864 7.136 25.56 224 0.875 bilinear
135 mixnet_s 75.992 24.008 92.796 7.204 4.13 224 0.875 bicubic
136 densenet169 75.906 24.094 93.026 6.974 14.15 224 0.875 bicubic
137 tf_mixnet_s 75.65 24.35 92.63 7.37 4.13 224 0.875 bicubic
138 mobilenetv3_rw 75.634 24.366 92.708 7.292 5.48 224 0.875 bicubic
139 tf_mobilenetv3_large_100 75.518 24.482 92.606 7.394 5.48 224 0.875 bilinear
140 semnasnet_100 75.448 24.552 92.604 7.396 3.89 224 0.875 bicubic
141 resnet26 75.292 24.708 92.57 7.43 16 224 0.875 bicubic
142 fbnetc_100 75.124 24.876 92.386 7.614 5.57 224 0.875 bilinear
143 hrnet_w18_small_v2 75.114 24.886 92.416 7.584 15.6 224 0.875 bilinear
144 resnet34 75.11 24.89 92.284 7.716 21.8 224 0.875 bilinear
145 seresnet34 74.808 25.192 92.124 7.876 21.96 224 0.875 bilinear
146 densenet121 74.738 25.262 92.15 7.85 7.98 224 0.875 bicubic
147 mnasnet_100 74.658 25.342 92.114 7.886 4.38 224 0.875 bicubic
148 dla34 74.63 25.37 92.078 7.922 15.78 224 0.875 bilinear
149 gluon_resnet34_v1b 74.588 25.412 91.99 8.01 21.8 224 0.875 bicubic
150 spnasnet_100 74.084 25.916 91.818 8.182 4.42 224 0.875 bilinear
151 tf_mobilenetv3_large_075 73.438 26.562 91.35 8.65 3.99 224 0.875 bilinear
152 tv_resnet34 73.312 26.688 91.426 8.574 21.8 224 0.875 bilinear
153 swsl_resnet18 73.276 26.724 91.734 8.266 11.69 224 0.875 bilinear
154 ssl_resnet18 72.61 27.39 91.416 8.584 11.69 224 0.875 bilinear
155 hrnet_w18_small 72.342 27.658 90.678 9.322 13.19 224 0.875 bilinear
156 tf_mobilenetv3_large_minimal_100 72.248 27.752 90.63 9.37 3.92 224 0.875 bilinear
157 seresnet18 71.742 28.258 90.334 9.666 11.78 224 0.875 bicubic
158 gluon_resnet18_v1b 70.836 29.164 89.76 10.24 11.69 224 0.875 bicubic
159 resnet18 69.748 30.252 89.078 10.922 11.69 224 0.875 bilinear
160 tf_mobilenetv3_small_100 67.922 32.078 87.664 12.336 2.54 224 0.875 bilinear
161 dla60x_c 67.892 32.108 88.426 11.574 1.34 224 0.875 bilinear
162 dla46x_c 65.97 34.03 86.98 13.02 1.08 224 0.875 bilinear
163 tf_mobilenetv3_small_075 65.716 34.284 86.13 13.87 2.04 224 0.875 bilinear
164 dla46_c 64.866 35.134 86.292 13.708 1.31 224 0.875 bilinear
165 tf_mobilenetv3_small_minimal_100 62.906 37.094 84.23 15.77 2.04 224 0.875 bilinear

@ -0,0 +1,165 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,76.87,23.13,93.31,6.69,828.41,224,0.875,bilinear
ig_resnext101_32x32d,76.84,23.16,93.2,6.8,468.53,224,0.875,bilinear
tf_efficientnet_b7_ap,76.09,23.91,92.97,7.03,66.35,600,0.949,bicubic
tf_efficientnet_b8_ap,76.09,23.91,92.73,7.27,87.41,672,0.954,bicubic
ig_resnext101_32x16d,75.72,24.28,92.91,7.09,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,75.43,24.57,92.76,7.24,88.79,224,0.875,bilinear
tf_efficientnet_b6_ap,75.38,24.62,92.44,7.56,43.04,528,0.942,bicubic
tf_efficientnet_b8,74.94,25.06,92.31,7.69,87.41,672,0.954,bicubic
tf_efficientnet_b7,74.72,25.28,92.22,7.78,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,74.6,25.4,91.99,8.01,30.39,456,0.934,bicubic
swsl_resnext101_32x4d,74.14,25.86,91.99,8.01,44.18,224,0.875,bilinear
swsl_resnext101_32x16d,74.02,25.98,92.16,7.84,194.03,224,0.875,bilinear
tf_efficientnet_b6,73.9,26.1,91.75,8.25,43.04,528,0.942,bicubic
ig_resnext101_32x8d,73.65,26.35,92.19,7.81,88.79,224,0.875,bilinear
tf_efficientnet_b5,73.55,26.45,91.46,8.54,30.39,456,0.934,bicubic
tf_efficientnet_b4_ap,72.89,27.11,90.98,9.02,19.34,380,0.922,bicubic
swsl_resnext50_32x4d,72.56,27.44,90.87,9.13,25.03,224,0.875,bilinear
pnasnet5large,72.38,27.62,90.24,9.76,86.06,331,0.875,bicubic
nasnetalarge,72.32,27.68,90.53,9.47,88.75,331,0.875,bicubic
tf_efficientnet_b4,72.29,27.71,90.59,9.41,19.34,380,0.922,bicubic
swsl_resnet50,71.7,28.3,90.5,9.5,25.56,224,0.875,bilinear
ssl_resnext101_32x8d,71.5,28.5,90.46,9.54,88.79,224,0.875,bilinear
ssl_resnext101_32x16d,71.41,28.59,90.56,9.44,194.03,224,0.875,bilinear
tf_efficientnet_b3_ap,70.92,29.08,89.43,10.57,12.23,300,0.904,bicubic
efficientnet_b3a,70.87,29.13,89.72,10.28,12.23,320,1.0,bicubic
efficientnet_b3,70.76,29.24,89.85,10.15,12.23,300,0.904,bicubic
tf_efficientnet_b3,70.64,29.36,89.44,10.56,12.23,300,0.904,bicubic
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
ssl_resnext101_32x4d,70.53,29.47,89.76,10.24,44.18,224,0.875,bilinear
senet154,70.5,29.5,89.01,10.99,115.09,224,0.875,bilinear
gluon_seresnext101_64x4d,70.43,29.57,89.35,10.65,88.23,224,0.875,bicubic
gluon_resnet152_v1s,70.29,29.71,88.85,11.15,60.32,224,0.875,bicubic
inception_resnet_v2,70.12,29.88,88.69,11.31,55.84,299,0.8975,bicubic
gluon_seresnext101_32x4d,70.01,29.99,88.9,11.1,48.96,224,0.875,bicubic
gluon_resnet152_v1d,69.96,30.04,88.49,11.51,60.21,224,0.875,bicubic
ssl_resnext50_32x4d,69.71,30.29,89.44,10.56,25.03,224,0.875,bilinear
gluon_resnext101_64x4d,69.68,30.32,88.27,11.73,83.46,224,0.875,bicubic
ens_adv_inception_resnet_v2,69.52,30.48,88.51,11.49,55.84,299,0.8975,bicubic
efficientnet_b2a,69.5,30.5,88.68,11.32,9.11,288,1.0,bicubic
inception_v4,69.36,30.64,88.78,11.22,42.68,299,0.875,bicubic
seresnext101_32x4d,69.36,30.64,88.07,11.93,48.96,224,0.875,bilinear
gluon_resnet152_v1c,69.14,30.86,87.87,12.13,60.21,224,0.875,bicubic
mixnet_xl,69.1,30.9,88.31,11.69,11.9,224,0.875,bicubic
gluon_resnet101_v1d,69.01,30.99,88.1,11.9,44.57,224,0.875,bicubic
efficientnet_b2,68.97,31.03,88.63,11.37,9.11,260,0.875,bicubic
gluon_resnext101_32x4d,68.96,31.04,88.36,11.64,44.18,224,0.875,bicubic
gluon_xception65,68.92,31.08,88.33,11.67,39.92,299,0.875,bicubic
tf_efficientnet_b2_ap,68.92,31.08,88.35,11.65,9.11,260,0.89,bicubic
gluon_resnet152_v1b,68.82,31.18,87.71,12.29,60.19,224,0.875,bicubic
dpn131,68.77,31.23,87.47,12.53,79.25,224,0.875,bicubic
tf_efficientnet_b2,68.75,31.25,87.99,12.01,9.11,260,0.89,bicubic
resnext50d_32x4d,68.74,31.26,88.3,11.7,25.05,224,0.875,bicubic
gluon_resnet101_v1s,68.71,31.29,87.91,12.09,44.67,224,0.875,bicubic
dpn107,68.69,31.31,88.13,11.87,86.92,224,0.875,bicubic
gluon_seresnext50_32x4d,68.67,31.33,88.31,11.69,27.56,224,0.875,bicubic
hrnet_w64,68.64,31.36,88.05,11.95,128.06,224,0.875,bilinear
dpn98,68.59,31.41,87.68,12.32,61.57,224,0.875,bicubic
ssl_resnet50,68.41,31.59,88.56,11.44,25.56,224,0.875,bilinear
dla102x2,68.33,31.67,87.89,12.11,41.75,224,0.875,bilinear
gluon_resnext50_32x4d,68.31,31.69,87.3,12.7,25.03,224,0.875,bicubic
tf_efficientnet_el,68.18,31.82,88.35,11.65,10.59,300,0.904,bicubic
dpn92,67.99,32.01,87.58,12.42,37.67,224,0.875,bicubic
gluon_resnet50_v1d,67.94,32.06,87.13,12.87,25.58,224,0.875,bicubic
resnext101_32x8d,67.86,32.14,87.49,12.51,88.79,224,0.875,bilinear
seresnext50_32x4d,67.84,32.16,87.62,12.38,27.56,224,0.875,bilinear
hrnet_w48,67.77,32.23,87.42,12.58,77.47,224,0.875,bilinear
hrnet_w44,67.74,32.26,87.56,12.44,67.06,224,0.875,bilinear
xception,67.65,32.35,87.57,12.43,22.86,299,0.8975,bicubic
dla169,67.61,32.39,87.59,12.41,53.99,224,0.875,bilinear
gluon_inception_v3,67.59,32.41,87.47,12.53,23.83,299,0.875,bicubic
gluon_resnet101_v1c,67.58,32.42,87.18,12.82,44.57,224,0.875,bicubic
res2net50_26w_8s,67.57,32.43,87.28,12.72,48.4,224,0.875,bilinear
hrnet_w40,67.56,32.44,87.14,12.86,57.56,224,0.875,bilinear
seresnet152,67.52,32.48,87.39,12.61,66.82,224,0.875,bilinear
tf_efficientnet_b1_ap,67.52,32.48,87.76,12.24,7.79,240,0.882,bicubic
gluon_resnet101_v1b,67.46,32.54,87.24,12.76,44.55,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,67.45,32.55,87.31,12.69,39.72,240,0.882,bicubic
res2net101_26w_4s,67.44,32.56,87.01,12.99,45.21,224,0.875,bilinear
resnet50,67.44,32.56,87.42,12.58,25.56,224,0.875,bicubic
efficientnet_b1,67.17,32.83,87.15,12.85,7.79,240,0.875,bicubic
seresnet101,67.16,32.84,87.06,12.94,49.33,224,0.875,bilinear
dla60x,67.1,32.9,87.19,12.81,17.65,224,0.875,bilinear
gluon_resnet50_v1s,67.06,32.94,86.86,13.14,25.68,224,0.875,bicubic
resnet152,67.05,32.95,87.55,12.45,60.19,224,0.875,bilinear
dla60_res2net,67.02,32.98,87.16,12.84,21.15,224,0.875,bilinear
dla102x,67.01,32.99,86.77,13.23,26.77,224,0.875,bilinear
mixnet_l,66.94,33.06,86.91,13.09,7.33,224,0.875,bicubic
res2net50_26w_6s,66.91,33.09,86.86,13.14,37.05,224,0.875,bilinear
tf_efficientnet_b1,66.88,33.12,87.01,12.99,7.79,240,0.882,bicubic
tf_efficientnet_em,66.88,33.12,86.97,13.03,6.9,240,0.882,bicubic
resnext50_32x4d,66.87,33.13,86.34,13.66,25.03,224,0.875,bicubic
hrnet_w30,66.78,33.22,86.8,13.2,37.71,224,0.875,bilinear
tf_mixnet_l,66.78,33.22,86.47,13.53,7.33,224,0.875,bicubic
selecsls60b,66.76,33.24,86.53,13.47,32.77,224,0.875,bicubic
hrnet_w32,66.75,33.25,87.3,12.7,41.23,224,0.875,bilinear
wide_resnet101_2,66.73,33.27,87.03,12.97,126.89,224,0.875,bilinear
adv_inception_v3,66.65,33.35,86.53,13.47,23.83,299,0.875,bicubic
wide_resnet50_2,66.65,33.35,86.8,13.2,68.88,224,0.875,bilinear
dla60_res2next,66.64,33.36,87.03,12.97,17.33,224,0.875,bilinear
gluon_resnet50_v1c,66.56,33.44,86.18,13.82,25.58,224,0.875,bicubic
dla102,66.54,33.46,86.91,13.09,33.73,224,0.875,bilinear
tf_inception_v3,66.41,33.59,86.66,13.34,23.83,299,0.875,bicubic
efficientnet_b0,66.29,33.71,85.96,14.04,5.29,224,0.875,bicubic
seresnet50,66.25,33.75,86.33,13.67,28.09,224,0.875,bilinear
selecsls60,66.21,33.79,86.34,13.66,30.67,224,0.875,bicubic
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
tf_efficientnet_cc_b0_8e,66.17,33.83,86.24,13.76,24.01,224,0.875,bicubic
inception_v3,66.15,33.85,86.33,13.67,27.16,299,0.875,bicubic
res2net50_26w_4s,66.14,33.86,86.6,13.4,25.7,224,0.875,bilinear
gluon_resnet50_v1b,66.07,33.93,86.26,13.74,25.56,224,0.875,bicubic
res2net50_14w_8s,66.02,33.98,86.25,13.75,25.06,224,0.875,bilinear
seresnext26tn_32x4d,65.88,34.12,85.68,14.32,16.81,224,0.875,bicubic
res2next50,65.85,34.15,85.84,14.16,24.67,224,0.875,bilinear
densenet161,65.84,34.16,86.45,13.55,28.68,224,0.875,bicubic
resnet101,65.69,34.31,85.98,14.02,44.55,224,0.875,bilinear
selecsls42b,65.61,34.39,85.81,14.19,32.46,224,0.875,bicubic
seresnext26t_32x4d,65.6,34.4,86.08,13.92,16.82,224,0.875,bicubic
dpn68b,65.57,34.43,85.93,14.07,12.61,224,0.875,bicubic
tf_efficientnet_b0_ap,65.49,34.51,85.58,14.42,5.29,224,0.875,bicubic
seresnext26d_32x4d,65.41,34.59,85.97,14.03,16.81,224,0.875,bicubic
res2net50_48w_2s,65.35,34.65,85.96,14.04,25.29,224,0.875,bilinear
densenet201,65.29,34.71,85.69,14.31,20.01,224,0.875,bicubic
tf_efficientnet_es,65.22,34.78,85.55,14.45,5.44,224,0.875,bicubic
dla60,65.2,34.8,85.76,14.24,22.33,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,65.15,34.85,85.16,14.84,13.31,224,0.875,bicubic
seresnext26_32x4d,65.05,34.95,85.66,14.34,16.79,224,0.875,bicubic
hrnet_w18,64.92,35.08,85.74,14.26,21.3,224,0.875,bilinear
densenet169,64.76,35.24,85.24,14.76,14.15,224,0.875,bicubic
mixnet_m,64.7,35.3,85.45,14.55,5.01,224,0.875,bicubic
resnet26d,64.68,35.32,85.12,14.88,16.01,224,0.875,bicubic
tf_efficientnet_b0,64.31,35.69,85.28,14.72,5.29,224,0.875,bicubic
tf_mixnet_m,64.27,35.73,85.09,14.91,5.01,224,0.875,bicubic
dpn68,64.23,35.77,85.18,14.82,12.61,224,0.875,bicubic
tf_mixnet_s,63.56,36.44,84.27,15.73,4.13,224,0.875,bicubic
resnet26,63.47,36.53,84.26,15.74,16.0,224,0.875,bicubic
mixnet_s,63.39,36.61,84.74,15.26,4.13,224,0.875,bicubic
tv_resnet50,63.33,36.67,84.64,15.36,25.56,224,0.875,bilinear
mobilenetv3_rw,63.22,36.78,84.51,15.49,5.48,224,0.875,bicubic
semnasnet_100,63.15,36.85,84.52,15.48,3.89,224,0.875,bicubic
densenet121,62.94,37.06,84.25,15.75,7.98,224,0.875,bicubic
resnet34,62.87,37.13,84.14,15.86,21.8,224,0.875,bilinear
seresnet34,62.85,37.15,84.21,15.79,21.96,224,0.875,bilinear
hrnet_w18_small_v2,62.8,37.2,83.98,16.02,15.6,224,0.875,bilinear
swsl_resnet18,62.76,37.24,84.3,15.7,11.69,224,0.875,bilinear
gluon_resnet34_v1b,62.57,37.43,83.99,16.01,21.8,224,0.875,bicubic
dla34,62.48,37.52,83.91,16.09,15.78,224,0.875,bilinear
tf_mobilenetv3_large_100,62.46,37.54,83.97,16.03,5.48,224,0.875,bilinear
fbnetc_100,62.44,37.56,83.38,16.62,5.57,224,0.875,bilinear
mnasnet_100,61.9,38.1,83.71,16.29,4.38,224,0.875,bicubic
ssl_resnet18,61.48,38.52,83.3,16.7,11.69,224,0.875,bilinear
spnasnet_100,61.22,38.78,82.79,17.21,4.42,224,0.875,bilinear
tv_resnet34,61.19,38.81,82.71,17.29,21.8,224,0.875,bilinear
tf_mobilenetv3_large_075,60.4,39.6,81.95,18.05,3.99,224,0.875,bilinear
seresnet18,59.8,40.2,81.69,18.31,11.78,224,0.875,bicubic
tf_mobilenetv3_large_minimal_100,59.07,40.93,81.15,18.85,3.92,224,0.875,bilinear
hrnet_w18_small,58.95,41.05,81.34,18.66,13.19,224,0.875,bilinear
gluon_resnet18_v1b,58.34,41.66,80.97,19.03,11.69,224,0.875,bicubic
resnet18,57.17,42.83,80.2,19.8,11.69,224,0.875,bilinear
dla60x_c,56.0,44.0,78.93,21.07,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,54.53,45.47,77.06,22.94,2.54,224,0.875,bilinear
dla46x_c,53.05,46.95,76.87,23.13,1.08,224,0.875,bilinear
tf_mobilenetv3_small_075,52.16,47.84,75.47,24.53,2.04,224,0.875,bilinear
dla46_c,52.13,47.87,75.69,24.31,1.31,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,49.5,50.5,73.05,26.95,2.04,224,0.875,bilinear
1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d 76.87 23.13 93.31 6.69 828.41 224 0.875 bilinear
3 ig_resnext101_32x32d 76.84 23.16 93.2 6.8 468.53 224 0.875 bilinear
4 tf_efficientnet_b7_ap 76.09 23.91 92.97 7.03 66.35 600 0.949 bicubic
5 tf_efficientnet_b8_ap 76.09 23.91 92.73 7.27 87.41 672 0.954 bicubic
6 ig_resnext101_32x16d 75.72 24.28 92.91 7.09 194.03 224 0.875 bilinear
7 swsl_resnext101_32x8d 75.43 24.57 92.76 7.24 88.79 224 0.875 bilinear
8 tf_efficientnet_b6_ap 75.38 24.62 92.44 7.56 43.04 528 0.942 bicubic
9 tf_efficientnet_b8 74.94 25.06 92.31 7.69 87.41 672 0.954 bicubic
10 tf_efficientnet_b7 74.72 25.28 92.22 7.78 66.35 600 0.949 bicubic
11 tf_efficientnet_b5_ap 74.6 25.4 91.99 8.01 30.39 456 0.934 bicubic
12 swsl_resnext101_32x4d 74.14 25.86 91.99 8.01 44.18 224 0.875 bilinear
13 swsl_resnext101_32x16d 74.02 25.98 92.16 7.84 194.03 224 0.875 bilinear
14 tf_efficientnet_b6 73.9 26.1 91.75 8.25 43.04 528 0.942 bicubic
15 ig_resnext101_32x8d 73.65 26.35 92.19 7.81 88.79 224 0.875 bilinear
16 tf_efficientnet_b5 73.55 26.45 91.46 8.54 30.39 456 0.934 bicubic
17 tf_efficientnet_b4_ap 72.89 27.11 90.98 9.02 19.34 380 0.922 bicubic
18 swsl_resnext50_32x4d 72.56 27.44 90.87 9.13 25.03 224 0.875 bilinear
19 pnasnet5large 72.38 27.62 90.24 9.76 86.06 331 0.875 bicubic
20 nasnetalarge 72.32 27.68 90.53 9.47 88.75 331 0.875 bicubic
21 tf_efficientnet_b4 72.29 27.71 90.59 9.41 19.34 380 0.922 bicubic
22 swsl_resnet50 71.7 28.3 90.5 9.5 25.56 224 0.875 bilinear
23 ssl_resnext101_32x8d 71.5 28.5 90.46 9.54 88.79 224 0.875 bilinear
24 ssl_resnext101_32x16d 71.41 28.59 90.56 9.44 194.03 224 0.875 bilinear
25 tf_efficientnet_b3_ap 70.92 29.08 89.43 10.57 12.23 300 0.904 bicubic
26 efficientnet_b3a 70.87 29.13 89.72 10.28 12.23 320 1.0 bicubic
27 efficientnet_b3 70.76 29.24 89.85 10.15 12.23 300 0.904 bicubic
28 tf_efficientnet_b3 70.64 29.36 89.44 10.56 12.23 300 0.904 bicubic
29 gluon_senet154 70.6 29.4 88.92 11.08 115.09 224 0.875 bicubic
30 ssl_resnext101_32x4d 70.53 29.47 89.76 10.24 44.18 224 0.875 bilinear
31 senet154 70.5 29.5 89.01 10.99 115.09 224 0.875 bilinear
32 gluon_seresnext101_64x4d 70.43 29.57 89.35 10.65 88.23 224 0.875 bicubic
33 gluon_resnet152_v1s 70.29 29.71 88.85 11.15 60.32 224 0.875 bicubic
34 inception_resnet_v2 70.12 29.88 88.69 11.31 55.84 299 0.8975 bicubic
35 gluon_seresnext101_32x4d 70.01 29.99 88.9 11.1 48.96 224 0.875 bicubic
36 gluon_resnet152_v1d 69.96 30.04 88.49 11.51 60.21 224 0.875 bicubic
37 ssl_resnext50_32x4d 69.71 30.29 89.44 10.56 25.03 224 0.875 bilinear
38 gluon_resnext101_64x4d 69.68 30.32 88.27 11.73 83.46 224 0.875 bicubic
39 ens_adv_inception_resnet_v2 69.52 30.48 88.51 11.49 55.84 299 0.8975 bicubic
40 efficientnet_b2a 69.5 30.5 88.68 11.32 9.11 288 1.0 bicubic
41 inception_v4 69.36 30.64 88.78 11.22 42.68 299 0.875 bicubic
42 seresnext101_32x4d 69.36 30.64 88.07 11.93 48.96 224 0.875 bilinear
43 gluon_resnet152_v1c 69.14 30.86 87.87 12.13 60.21 224 0.875 bicubic
44 mixnet_xl 69.1 30.9 88.31 11.69 11.9 224 0.875 bicubic
45 gluon_resnet101_v1d 69.01 30.99 88.1 11.9 44.57 224 0.875 bicubic
46 efficientnet_b2 68.97 31.03 88.63 11.37 9.11 260 0.875 bicubic
47 gluon_resnext101_32x4d 68.96 31.04 88.36 11.64 44.18 224 0.875 bicubic
48 gluon_xception65 68.92 31.08 88.33 11.67 39.92 299 0.875 bicubic
49 tf_efficientnet_b2_ap 68.92 31.08 88.35 11.65 9.11 260 0.89 bicubic
50 gluon_resnet152_v1b 68.82 31.18 87.71 12.29 60.19 224 0.875 bicubic
51 dpn131 68.77 31.23 87.47 12.53 79.25 224 0.875 bicubic
52 tf_efficientnet_b2 68.75 31.25 87.99 12.01 9.11 260 0.89 bicubic
53 resnext50d_32x4d 68.74 31.26 88.3 11.7 25.05 224 0.875 bicubic
54 gluon_resnet101_v1s 68.71 31.29 87.91 12.09 44.67 224 0.875 bicubic
55 dpn107 68.69 31.31 88.13 11.87 86.92 224 0.875 bicubic
56 gluon_seresnext50_32x4d 68.67 31.33 88.31 11.69 27.56 224 0.875 bicubic
57 hrnet_w64 68.64 31.36 88.05 11.95 128.06 224 0.875 bilinear
58 dpn98 68.59 31.41 87.68 12.32 61.57 224 0.875 bicubic
59 ssl_resnet50 68.41 31.59 88.56 11.44 25.56 224 0.875 bilinear
60 dla102x2 68.33 31.67 87.89 12.11 41.75 224 0.875 bilinear
61 gluon_resnext50_32x4d 68.31 31.69 87.3 12.7 25.03 224 0.875 bicubic
62 tf_efficientnet_el 68.18 31.82 88.35 11.65 10.59 300 0.904 bicubic
63 dpn92 67.99 32.01 87.58 12.42 37.67 224 0.875 bicubic
64 gluon_resnet50_v1d 67.94 32.06 87.13 12.87 25.58 224 0.875 bicubic
65 resnext101_32x8d 67.86 32.14 87.49 12.51 88.79 224 0.875 bilinear
66 seresnext50_32x4d 67.84 32.16 87.62 12.38 27.56 224 0.875 bilinear
67 hrnet_w48 67.77 32.23 87.42 12.58 77.47 224 0.875 bilinear
68 hrnet_w44 67.74 32.26 87.56 12.44 67.06 224 0.875 bilinear
69 xception 67.65 32.35 87.57 12.43 22.86 299 0.8975 bicubic
70 dla169 67.61 32.39 87.59 12.41 53.99 224 0.875 bilinear
71 gluon_inception_v3 67.59 32.41 87.47 12.53 23.83 299 0.875 bicubic
72 gluon_resnet101_v1c 67.58 32.42 87.18 12.82 44.57 224 0.875 bicubic
73 res2net50_26w_8s 67.57 32.43 87.28 12.72 48.4 224 0.875 bilinear
74 hrnet_w40 67.56 32.44 87.14 12.86 57.56 224 0.875 bilinear
75 seresnet152 67.52 32.48 87.39 12.61 66.82 224 0.875 bilinear
76 tf_efficientnet_b1_ap 67.52 32.48 87.76 12.24 7.79 240 0.882 bicubic
77 gluon_resnet101_v1b 67.46 32.54 87.24 12.76 44.55 224 0.875 bicubic
78 tf_efficientnet_cc_b1_8e 67.45 32.55 87.31 12.69 39.72 240 0.882 bicubic
79 res2net101_26w_4s 67.44 32.56 87.01 12.99 45.21 224 0.875 bilinear
80 resnet50 67.44 32.56 87.42 12.58 25.56 224 0.875 bicubic
81 efficientnet_b1 67.17 32.83 87.15 12.85 7.79 240 0.875 bicubic
82 seresnet101 67.16 32.84 87.06 12.94 49.33 224 0.875 bilinear
83 dla60x 67.1 32.9 87.19 12.81 17.65 224 0.875 bilinear
84 gluon_resnet50_v1s 67.06 32.94 86.86 13.14 25.68 224 0.875 bicubic
85 resnet152 67.05 32.95 87.55 12.45 60.19 224 0.875 bilinear
86 dla60_res2net 67.02 32.98 87.16 12.84 21.15 224 0.875 bilinear
87 dla102x 67.01 32.99 86.77 13.23 26.77 224 0.875 bilinear
88 mixnet_l 66.94 33.06 86.91 13.09 7.33 224 0.875 bicubic
89 res2net50_26w_6s 66.91 33.09 86.86 13.14 37.05 224 0.875 bilinear
90 tf_efficientnet_b1 66.88 33.12 87.01 12.99 7.79 240 0.882 bicubic
91 tf_efficientnet_em 66.88 33.12 86.97 13.03 6.9 240 0.882 bicubic
92 resnext50_32x4d 66.87 33.13 86.34 13.66 25.03 224 0.875 bicubic
93 hrnet_w30 66.78 33.22 86.8 13.2 37.71 224 0.875 bilinear
94 tf_mixnet_l 66.78 33.22 86.47 13.53 7.33 224 0.875 bicubic
95 selecsls60b 66.76 33.24 86.53 13.47 32.77 224 0.875 bicubic
96 hrnet_w32 66.75 33.25 87.3 12.7 41.23 224 0.875 bilinear
97 wide_resnet101_2 66.73 33.27 87.03 12.97 126.89 224 0.875 bilinear
98 adv_inception_v3 66.65 33.35 86.53 13.47 23.83 299 0.875 bicubic
99 wide_resnet50_2 66.65 33.35 86.8 13.2 68.88 224 0.875 bilinear
100 dla60_res2next 66.64 33.36 87.03 12.97 17.33 224 0.875 bilinear
101 gluon_resnet50_v1c 66.56 33.44 86.18 13.82 25.58 224 0.875 bicubic
102 dla102 66.54 33.46 86.91 13.09 33.73 224 0.875 bilinear
103 tf_inception_v3 66.41 33.59 86.66 13.34 23.83 299 0.875 bicubic
104 efficientnet_b0 66.29 33.71 85.96 14.04 5.29 224 0.875 bicubic
105 seresnet50 66.25 33.75 86.33 13.67 28.09 224 0.875 bilinear
106 selecsls60 66.21 33.79 86.34 13.66 30.67 224 0.875 bicubic
107 tv_resnext50_32x4d 66.18 33.82 86.04 13.96 25.03 224 0.875 bilinear
108 tf_efficientnet_cc_b0_8e 66.17 33.83 86.24 13.76 24.01 224 0.875 bicubic
109 inception_v3 66.15 33.85 86.33 13.67 27.16 299 0.875 bicubic
110 res2net50_26w_4s 66.14 33.86 86.6 13.4 25.7 224 0.875 bilinear
111 gluon_resnet50_v1b 66.07 33.93 86.26 13.74 25.56 224 0.875 bicubic
112 res2net50_14w_8s 66.02 33.98 86.25 13.75 25.06 224 0.875 bilinear
113 seresnext26tn_32x4d 65.88 34.12 85.68 14.32 16.81 224 0.875 bicubic
114 res2next50 65.85 34.15 85.84 14.16 24.67 224 0.875 bilinear
115 densenet161 65.84 34.16 86.45 13.55 28.68 224 0.875 bicubic
116 resnet101 65.69 34.31 85.98 14.02 44.55 224 0.875 bilinear
117 selecsls42b 65.61 34.39 85.81 14.19 32.46 224 0.875 bicubic
118 seresnext26t_32x4d 65.6 34.4 86.08 13.92 16.82 224 0.875 bicubic
119 dpn68b 65.57 34.43 85.93 14.07 12.61 224 0.875 bicubic
120 tf_efficientnet_b0_ap 65.49 34.51 85.58 14.42 5.29 224 0.875 bicubic
121 seresnext26d_32x4d 65.41 34.59 85.97 14.03 16.81 224 0.875 bicubic
122 res2net50_48w_2s 65.35 34.65 85.96 14.04 25.29 224 0.875 bilinear
123 densenet201 65.29 34.71 85.69 14.31 20.01 224 0.875 bicubic
124 tf_efficientnet_es 65.22 34.78 85.55 14.45 5.44 224 0.875 bicubic
125 dla60 65.2 34.8 85.76 14.24 22.33 224 0.875 bilinear
126 tf_efficientnet_cc_b0_4e 65.15 34.85 85.16 14.84 13.31 224 0.875 bicubic
127 seresnext26_32x4d 65.05 34.95 85.66 14.34 16.79 224 0.875 bicubic
128 hrnet_w18 64.92 35.08 85.74 14.26 21.3 224 0.875 bilinear
129 densenet169 64.76 35.24 85.24 14.76 14.15 224 0.875 bicubic
130 mixnet_m 64.7 35.3 85.45 14.55 5.01 224 0.875 bicubic
131 resnet26d 64.68 35.32 85.12 14.88 16.01 224 0.875 bicubic
132 tf_efficientnet_b0 64.31 35.69 85.28 14.72 5.29 224 0.875 bicubic
133 tf_mixnet_m 64.27 35.73 85.09 14.91 5.01 224 0.875 bicubic
134 dpn68 64.23 35.77 85.18 14.82 12.61 224 0.875 bicubic
135 tf_mixnet_s 63.56 36.44 84.27 15.73 4.13 224 0.875 bicubic
136 resnet26 63.47 36.53 84.26 15.74 16.0 224 0.875 bicubic
137 mixnet_s 63.39 36.61 84.74 15.26 4.13 224 0.875 bicubic
138 tv_resnet50 63.33 36.67 84.64 15.36 25.56 224 0.875 bilinear
139 mobilenetv3_rw 63.22 36.78 84.51 15.49 5.48 224 0.875 bicubic
140 semnasnet_100 63.15 36.85 84.52 15.48 3.89 224 0.875 bicubic
141 densenet121 62.94 37.06 84.25 15.75 7.98 224 0.875 bicubic
142 resnet34 62.87 37.13 84.14 15.86 21.8 224 0.875 bilinear
143 seresnet34 62.85 37.15 84.21 15.79 21.96 224 0.875 bilinear
144 hrnet_w18_small_v2 62.8 37.2 83.98 16.02 15.6 224 0.875 bilinear
145 swsl_resnet18 62.76 37.24 84.3 15.7 11.69 224 0.875 bilinear
146 gluon_resnet34_v1b 62.57 37.43 83.99 16.01 21.8 224 0.875 bicubic
147 dla34 62.48 37.52 83.91 16.09 15.78 224 0.875 bilinear
148 tf_mobilenetv3_large_100 62.46 37.54 83.97 16.03 5.48 224 0.875 bilinear
149 fbnetc_100 62.44 37.56 83.38 16.62 5.57 224 0.875 bilinear
150 mnasnet_100 61.9 38.1 83.71 16.29 4.38 224 0.875 bicubic
151 ssl_resnet18 61.48 38.52 83.3 16.7 11.69 224 0.875 bilinear
152 spnasnet_100 61.22 38.78 82.79 17.21 4.42 224 0.875 bilinear
153 tv_resnet34 61.19 38.81 82.71 17.29 21.8 224 0.875 bilinear
154 tf_mobilenetv3_large_075 60.4 39.6 81.95 18.05 3.99 224 0.875 bilinear
155 seresnet18 59.8 40.2 81.69 18.31 11.78 224 0.875 bicubic
156 tf_mobilenetv3_large_minimal_100 59.07 40.93 81.15 18.85 3.92 224 0.875 bilinear
157 hrnet_w18_small 58.95 41.05 81.34 18.66 13.19 224 0.875 bilinear
158 gluon_resnet18_v1b 58.34 41.66 80.97 19.03 11.69 224 0.875 bicubic
159 resnet18 57.17 42.83 80.2 19.8 11.69 224 0.875 bilinear
160 dla60x_c 56.0 44.0 78.93 21.07 1.34 224 0.875 bilinear
161 tf_mobilenetv3_small_100 54.53 45.47 77.06 22.94 2.54 224 0.875 bilinear
162 dla46x_c 53.05 46.95 76.87 23.13 1.08 224 0.875 bilinear
163 tf_mobilenetv3_small_075 52.16 47.84 75.47 24.53 2.04 224 0.875 bilinear
164 dla46_c 52.13 47.87 75.69 24.31 1.31 224 0.875 bilinear
165 tf_mobilenetv3_small_minimal_100 49.5 50.5 73.05 26.95 2.04 224 0.875 bilinear

@ -1,155 +0,0 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,76.87,23.13,93.32,6.68,828.41,224,0.875,bilinear
ig_resnext101_32x32d,76.84,23.16,93.19,6.81,468.53,224,0.875,bilinear
tf_efficientnet_b7_ap,76.09,23.91,92.97,7.03,66.35,600,0.949,bicubic
tf_efficientnet_b8_ap,76.09,23.91,92.73,7.27,87.41,672,0.954,bicubic
ig_resnext101_32x16d,75.71,24.29,92.9,7.1,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,75.45,24.55,92.75,7.25,88.79,224,0.875,bilinear
tf_efficientnet_b6_ap,75.38,24.62,92.44,7.56,43.04,528,0.942,bicubic
tf_efficientnet_b7,74.72,25.28,92.22,7.78,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,74.59,25.41,91.99,8.01,30.39,456,0.934,bicubic
swsl_resnext101_32x4d,74.15,25.85,91.99,8.01,44.18,224,0.875,bilinear
swsl_resnext101_32x16d,74.01,25.99,92.17,7.83,194.03,224,0.875,bilinear
tf_efficientnet_b6,73.9,26.1,91.75,8.25,43.04,528,0.942,bicubic
ig_resnext101_32x8d,73.66,26.34,92.15,7.85,88.79,224,0.875,bilinear
tf_efficientnet_b5,73.54,26.46,91.46,8.54,30.39,456,0.934,bicubic
tf_efficientnet_b4_ap,72.89,27.11,90.98,9.02,19.34,380,0.922,bicubic
swsl_resnext50_32x4d,72.58,27.42,90.84,9.16,25.03,224,0.875,bilinear
pnasnet5large,72.37,27.63,90.26,9.74,86.06,331,0.875,bicubic
nasnetalarge,72.31,27.69,90.51,9.49,88.75,331,0.875,bicubic
tf_efficientnet_b4,72.28,27.72,90.6,9.4,19.34,380,0.922,bicubic
swsl_resnet50,71.69,28.31,90.51,9.49,25.56,224,0.875,bilinear
ssl_resnext101_32x8d,71.49,28.51,90.47,9.53,88.79,224,0.875,bilinear
ssl_resnext101_32x16d,71.4,28.6,90.55,9.45,194.03,224,0.875,bilinear
tf_efficientnet_b3_ap,70.92,29.08,89.43,10.57,12.23,300,0.904,bicubic
tf_efficientnet_b3,70.62,29.38,89.44,10.56,12.23,300,0.904,bicubic
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
ssl_resnext101_32x4d,70.5,29.5,89.76,10.24,44.18,224,0.875,bilinear
senet154,70.48,29.52,88.99,11.01,115.09,224,0.875,bilinear
gluon_seresnext101_64x4d,70.44,29.56,89.35,10.65,88.23,224,0.875,bicubic
gluon_resnet152_v1s,70.32,29.68,88.87,11.13,60.32,224,0.875,bicubic
inception_resnet_v2,70.12,29.88,88.68,11.32,55.84,299,0.8975,bicubic
gluon_seresnext101_32x4d,70.01,29.99,88.91,11.09,48.96,224,0.875,bicubic
gluon_resnet152_v1d,69.95,30.05,88.47,11.53,60.21,224,0.875,bicubic
gluon_resnext101_64x4d,69.69,30.31,88.26,11.74,83.46,224,0.875,bicubic
ssl_resnext50_32x4d,69.69,30.31,89.42,10.58,25.03,224,0.875,bilinear
ens_adv_inception_resnet_v2,69.52,30.48,88.5,11.5,55.84,299,0.8975,bicubic
inception_v4,69.35,30.65,88.78,11.22,42.68,299,0.875,bicubic
seresnext101_32x4d,69.34,30.66,88.05,11.95,48.96,224,0.875,bilinear
gluon_resnet152_v1c,69.13,30.87,87.89,12.11,60.21,224,0.875,bicubic
mixnet_xl,69,31,88.19,11.81,11.9,224,0.875,bicubic
gluon_resnet101_v1d,68.99,31.01,88.08,11.92,44.57,224,0.875,bicubic
gluon_xception65,68.98,31.02,88.32,11.68,39.92,299,0.875,bicubic
gluon_resnext101_32x4d,68.96,31.04,88.34,11.66,44.18,224,0.875,bicubic
tf_efficientnet_b2_ap,68.93,31.07,88.34,11.66,9.11,260,0.89,bicubic
gluon_resnet152_v1b,68.81,31.19,87.71,12.29,60.19,224,0.875,bicubic
dpn131,68.76,31.24,87.48,12.52,79.25,224,0.875,bicubic
resnext50d_32x4d,68.75,31.25,88.31,11.69,25.05,224,0.875,bicubic
tf_efficientnet_b2,68.75,31.25,87.95,12.05,9.11,260,0.89,bicubic
gluon_resnet101_v1s,68.72,31.28,87.9,12.1,44.67,224,0.875,bicubic
dpn107,68.71,31.29,88.13,11.87,86.92,224,0.875,bicubic
gluon_seresnext50_32x4d,68.67,31.33,88.32,11.68,27.56,224,0.875,bicubic
hrnet_w64,68.63,31.37,88.07,11.93,128.06,224,0.875,bilinear
dpn98,68.58,31.42,87.66,12.34,61.57,224,0.875,bicubic
ssl_resnet50,68.42,31.58,88.58,11.42,25.56,224,0.875,bilinear
dla102x2,68.34,31.66,87.87,12.13,41.75,224,0.875,bilinear
gluon_resnext50_32x4d,68.28,31.72,87.32,12.68,25.03,224,0.875,bicubic
tf_efficientnet_el,68.18,31.82,88.35,11.65,10.59,300,0.904,bicubic
dpn92,68.01,31.99,87.59,12.41,37.67,224,0.875,bicubic
gluon_resnet50_v1d,67.91,32.09,87.12,12.88,25.58,224,0.875,bicubic
seresnext50_32x4d,67.87,32.13,87.62,12.38,27.56,224,0.875,bilinear
resnext101_32x8d,67.85,32.15,87.48,12.52,88.79,224,0.875,bilinear
efficientnet_b2,67.8,32.2,88.2,11.8,9.11,260,0.89,bicubic
hrnet_w44,67.77,32.23,87.53,12.47,67.06,224,0.875,bilinear
hrnet_w48,67.77,32.23,87.42,12.58,77.47,224,0.875,bilinear
xception,67.67,32.33,87.57,12.43,22.86,299,0.8975,bicubic
dla169,67.61,32.39,87.56,12.44,53.99,224,0.875,bilinear
gluon_inception_v3,67.59,32.41,87.46,12.54,23.83,299,0.875,bicubic
hrnet_w40,67.59,32.41,87.13,12.87,57.56,224,0.875,bilinear
gluon_resnet101_v1c,67.56,32.44,87.16,12.84,44.57,224,0.875,bicubic
efficientnet_b1,67.55,32.45,87.29,12.71,7.79,240,0.882,bicubic
seresnet152,67.55,32.45,87.39,12.61,66.82,224,0.875,bilinear
res2net50_26w_8s,67.53,32.47,87.27,12.73,48.4,224,0.875,bilinear
tf_efficientnet_b1_ap,67.52,32.48,87.77,12.23,7.79,240,0.882,bicubic
tf_efficientnet_cc_b1_8e,67.48,32.52,87.31,12.69,39.72,240,0.882,bicubic
gluon_resnet101_v1b,67.45,32.55,87.23,12.77,44.55,224,0.875,bicubic
res2net101_26w_4s,67.45,32.55,87.01,12.99,45.21,224,0.875,bilinear
seresnet101,67.15,32.85,87.05,12.95,49.33,224,0.875,bilinear
gluon_resnet50_v1s,67.1,32.9,86.86,13.14,25.68,224,0.875,bicubic
dla60x,67.08,32.92,87.17,12.83,17.65,224,0.875,bilinear
dla60_res2net,67.03,32.97,87.14,12.86,21.15,224,0.875,bilinear
resnet152,67.02,32.98,87.57,12.43,60.19,224,0.875,bilinear
dla102x,67,33,86.77,13.23,26.77,224,0.875,bilinear
mixnet_l,66.97,33.03,86.94,13.06,7.33,224,0.875,bicubic
res2net50_26w_6s,66.91,33.09,86.9,13.1,37.05,224,0.875,bilinear
tf_efficientnet_b1,66.89,33.11,87.04,12.96,7.79,240,0.882,bicubic
resnext50_32x4d,66.88,33.12,86.36,13.64,25.03,224,0.875,bicubic
tf_efficientnet_em,66.87,33.13,86.98,13.02,6.9,240,0.882,bicubic
resnet50,66.81,33.19,87,13,25.56,224,0.875,bicubic
hrnet_w32,66.79,33.21,87.29,12.71,41.23,224,0.875,bilinear
tf_mixnet_l,66.78,33.22,86.46,13.54,7.33,224,0.875,bicubic
hrnet_w30,66.76,33.24,86.79,13.21,37.71,224,0.875,bilinear
wide_resnet101_2,66.68,33.32,87.04,12.96,126.89,224,0.875,bilinear
wide_resnet50_2,66.65,33.35,86.81,13.19,68.88,224,0.875,bilinear
dla60_res2next,66.64,33.36,87.02,12.98,17.33,224,0.875,bilinear
adv_inception_v3,66.6,33.4,86.56,13.44,23.83,299,0.875,bicubic
dla102,66.55,33.45,86.91,13.09,33.73,224,0.875,bilinear
gluon_resnet50_v1c,66.54,33.46,86.16,13.84,25.58,224,0.875,bicubic
tf_inception_v3,66.42,33.58,86.68,13.32,23.83,299,0.875,bicubic
seresnet50,66.24,33.76,86.33,13.67,28.09,224,0.875,bilinear
tf_efficientnet_cc_b0_8e,66.21,33.79,86.22,13.78,24.01,224,0.875,bicubic
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
res2net50_26w_4s,66.17,33.83,86.6,13.4,25.7,224,0.875,bilinear
inception_v3,66.12,33.88,86.34,13.66,27.16,299,0.875,bicubic
gluon_resnet50_v1b,66.04,33.96,86.27,13.73,25.56,224,0.875,bicubic
res2net50_14w_8s,66.02,33.98,86.24,13.76,25.06,224,0.875,bilinear
densenet161,65.85,34.15,86.46,13.54,28.68,224,0.875,bicubic
res2next50,65.85,34.15,85.83,14.17,24.67,224,0.875,bilinear
resnet101,65.68,34.32,85.98,14.02,44.55,224,0.875,bilinear
dpn68b,65.6,34.4,85.94,14.06,12.61,224,0.875,bicubic
tf_efficientnet_b0_ap,65.49,34.51,85.55,14.45,5.29,224,0.875,bicubic
res2net50_48w_2s,65.32,34.68,85.96,14.04,25.29,224,0.875,bilinear
densenet201,65.28,34.72,85.67,14.33,20.01,224,0.875,bicubic
tf_efficientnet_es,65.24,34.76,85.54,14.46,5.44,224,0.875,bicubic
dla60,65.22,34.78,85.75,14.25,22.33,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,65.13,34.87,85.13,14.87,13.31,224,0.875,bicubic
seresnext26_32x4d,65.04,34.96,85.65,14.35,16.79,224,0.875,bicubic
hrnet_w18,64.91,35.09,85.75,14.25,21.3,224,0.875,bilinear
densenet169,64.78,35.22,85.25,14.75,14.15,224,0.875,bicubic
mixnet_m,64.69,35.31,85.47,14.53,5.01,224,0.875,bicubic
resnet26d,64.63,35.37,85.12,14.88,16.01,224,0.875,bicubic
efficientnet_b0,64.58,35.42,85.89,14.11,5.29,224,0.875,bicubic
tf_efficientnet_b0,64.29,35.71,85.25,14.75,5.29,224,0.875,bicubic
tf_mixnet_m,64.27,35.73,85.09,14.91,5.01,224,0.875,bicubic
dpn68,64.22,35.78,85.18,14.82,12.61,224,0.875,bicubic
tf_mixnet_s,63.59,36.41,84.27,15.73,4.13,224,0.875,bicubic
resnet26,63.45,36.55,84.27,15.73,16,224,0.875,bicubic
mixnet_s,63.38,36.62,84.71,15.29,4.13,224,0.875,bicubic
tv_resnet50,63.33,36.67,84.65,15.35,25.56,224,0.875,bilinear
mobilenetv3_rw,63.23,36.77,84.52,15.48,5.48,224,0.875,bicubic
semnasnet_100,63.12,36.88,84.53,15.47,3.89,224,0.875,bicubic
densenet121,62.94,37.06,84.26,15.74,7.98,224,0.875,bicubic
seresnet34,62.89,37.11,84.22,15.78,21.96,224,0.875,bilinear
hrnet_w18_small_v2,62.83,37.17,83.97,16.03,15.6,224,0.875,bilinear
resnet34,62.82,37.18,84.12,15.88,21.8,224,0.875,bilinear
swsl_resnet18,62.73,37.27,84.3,15.7,11.69,224,0.875,bilinear
gluon_resnet34_v1b,62.56,37.44,84,16,21.8,224,0.875,bicubic
dla34,62.51,37.49,83.92,16.08,15.78,224,0.875,bilinear
tf_mobilenetv3_large_100,62.47,37.53,83.96,16.04,5.48,224,0.875,bilinear
fbnetc_100,62.43,37.57,83.39,16.61,5.57,224,0.875,bilinear
mnasnet_100,61.91,38.09,83.71,16.29,4.38,224,0.875,bicubic
ssl_resnet18,61.49,38.51,83.33,16.67,11.69,224,0.875,bilinear
spnasnet_100,61.21,38.79,82.77,17.23,4.42,224,0.875,bilinear
tv_resnet34,61.2,38.8,82.72,17.28,21.8,224,0.875,bilinear
tf_mobilenetv3_large_075,60.38,39.62,81.96,18.04,3.99,224,0.875,bilinear
seresnet18,59.81,40.19,81.68,18.32,11.78,224,0.875,bicubic
tf_mobilenetv3_large_minimal_100,59.07,40.93,81.14,18.86,3.92,224,0.875,bilinear
hrnet_w18_small,58.97,41.03,81.34,18.66,13.19,224,0.875,bilinear
gluon_resnet18_v1b,58.32,41.68,80.96,19.04,11.69,224,0.875,bicubic
resnet18,57.18,42.82,80.19,19.81,11.69,224,0.875,bilinear
dla60x_c,56.02,43.98,78.96,21.04,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,54.51,45.49,77.08,22.92,2.54,224,0.875,bilinear
dla46x_c,53.08,46.92,76.84,23.16,1.08,224,0.875,bilinear
dla46_c,52.2,47.8,75.68,24.32,1.31,224,0.875,bilinear
tf_mobilenetv3_small_075,52.15,47.85,75.46,24.54,2.04,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,49.53,50.47,73.05,26.95,2.04,224,0.875,bilinear
1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d 76.87 23.13 93.32 6.68 828.41 224 0.875 bilinear
3 ig_resnext101_32x32d 76.84 23.16 93.19 6.81 468.53 224 0.875 bilinear
4 tf_efficientnet_b7_ap 76.09 23.91 92.97 7.03 66.35 600 0.949 bicubic
5 tf_efficientnet_b8_ap 76.09 23.91 92.73 7.27 87.41 672 0.954 bicubic
6 ig_resnext101_32x16d 75.71 24.29 92.9 7.1 194.03 224 0.875 bilinear
7 swsl_resnext101_32x8d 75.45 24.55 92.75 7.25 88.79 224 0.875 bilinear
8 tf_efficientnet_b6_ap 75.38 24.62 92.44 7.56 43.04 528 0.942 bicubic
9 tf_efficientnet_b7 74.72 25.28 92.22 7.78 66.35 600 0.949 bicubic
10 tf_efficientnet_b5_ap 74.59 25.41 91.99 8.01 30.39 456 0.934 bicubic
11 swsl_resnext101_32x4d 74.15 25.85 91.99 8.01 44.18 224 0.875 bilinear
12 swsl_resnext101_32x16d 74.01 25.99 92.17 7.83 194.03 224 0.875 bilinear
13 tf_efficientnet_b6 73.9 26.1 91.75 8.25 43.04 528 0.942 bicubic
14 ig_resnext101_32x8d 73.66 26.34 92.15 7.85 88.79 224 0.875 bilinear
15 tf_efficientnet_b5 73.54 26.46 91.46 8.54 30.39 456 0.934 bicubic
16 tf_efficientnet_b4_ap 72.89 27.11 90.98 9.02 19.34 380 0.922 bicubic
17 swsl_resnext50_32x4d 72.58 27.42 90.84 9.16 25.03 224 0.875 bilinear
18 pnasnet5large 72.37 27.63 90.26 9.74 86.06 331 0.875 bicubic
19 nasnetalarge 72.31 27.69 90.51 9.49 88.75 331 0.875 bicubic
20 tf_efficientnet_b4 72.28 27.72 90.6 9.4 19.34 380 0.922 bicubic
21 swsl_resnet50 71.69 28.31 90.51 9.49 25.56 224 0.875 bilinear
22 ssl_resnext101_32x8d 71.49 28.51 90.47 9.53 88.79 224 0.875 bilinear
23 ssl_resnext101_32x16d 71.4 28.6 90.55 9.45 194.03 224 0.875 bilinear
24 tf_efficientnet_b3_ap 70.92 29.08 89.43 10.57 12.23 300 0.904 bicubic
25 tf_efficientnet_b3 70.62 29.38 89.44 10.56 12.23 300 0.904 bicubic
26 gluon_senet154 70.6 29.4 88.92 11.08 115.09 224 0.875 bicubic
27 ssl_resnext101_32x4d 70.5 29.5 89.76 10.24 44.18 224 0.875 bilinear
28 senet154 70.48 29.52 88.99 11.01 115.09 224 0.875 bilinear
29 gluon_seresnext101_64x4d 70.44 29.56 89.35 10.65 88.23 224 0.875 bicubic
30 gluon_resnet152_v1s 70.32 29.68 88.87 11.13 60.32 224 0.875 bicubic
31 inception_resnet_v2 70.12 29.88 88.68 11.32 55.84 299 0.8975 bicubic
32 gluon_seresnext101_32x4d 70.01 29.99 88.91 11.09 48.96 224 0.875 bicubic
33 gluon_resnet152_v1d 69.95 30.05 88.47 11.53 60.21 224 0.875 bicubic
34 gluon_resnext101_64x4d 69.69 30.31 88.26 11.74 83.46 224 0.875 bicubic
35 ssl_resnext50_32x4d 69.69 30.31 89.42 10.58 25.03 224 0.875 bilinear
36 ens_adv_inception_resnet_v2 69.52 30.48 88.5 11.5 55.84 299 0.8975 bicubic
37 inception_v4 69.35 30.65 88.78 11.22 42.68 299 0.875 bicubic
38 seresnext101_32x4d 69.34 30.66 88.05 11.95 48.96 224 0.875 bilinear
39 gluon_resnet152_v1c 69.13 30.87 87.89 12.11 60.21 224 0.875 bicubic
40 mixnet_xl 69 31 88.19 11.81 11.9 224 0.875 bicubic
41 gluon_resnet101_v1d 68.99 31.01 88.08 11.92 44.57 224 0.875 bicubic
42 gluon_xception65 68.98 31.02 88.32 11.68 39.92 299 0.875 bicubic
43 gluon_resnext101_32x4d 68.96 31.04 88.34 11.66 44.18 224 0.875 bicubic
44 tf_efficientnet_b2_ap 68.93 31.07 88.34 11.66 9.11 260 0.89 bicubic
45 gluon_resnet152_v1b 68.81 31.19 87.71 12.29 60.19 224 0.875 bicubic
46 dpn131 68.76 31.24 87.48 12.52 79.25 224 0.875 bicubic
47 resnext50d_32x4d 68.75 31.25 88.31 11.69 25.05 224 0.875 bicubic
48 tf_efficientnet_b2 68.75 31.25 87.95 12.05 9.11 260 0.89 bicubic
49 gluon_resnet101_v1s 68.72 31.28 87.9 12.1 44.67 224 0.875 bicubic
50 dpn107 68.71 31.29 88.13 11.87 86.92 224 0.875 bicubic
51 gluon_seresnext50_32x4d 68.67 31.33 88.32 11.68 27.56 224 0.875 bicubic
52 hrnet_w64 68.63 31.37 88.07 11.93 128.06 224 0.875 bilinear
53 dpn98 68.58 31.42 87.66 12.34 61.57 224 0.875 bicubic
54 ssl_resnet50 68.42 31.58 88.58 11.42 25.56 224 0.875 bilinear
55 dla102x2 68.34 31.66 87.87 12.13 41.75 224 0.875 bilinear
56 gluon_resnext50_32x4d 68.28 31.72 87.32 12.68 25.03 224 0.875 bicubic
57 tf_efficientnet_el 68.18 31.82 88.35 11.65 10.59 300 0.904 bicubic
58 dpn92 68.01 31.99 87.59 12.41 37.67 224 0.875 bicubic
59 gluon_resnet50_v1d 67.91 32.09 87.12 12.88 25.58 224 0.875 bicubic
60 seresnext50_32x4d 67.87 32.13 87.62 12.38 27.56 224 0.875 bilinear
61 resnext101_32x8d 67.85 32.15 87.48 12.52 88.79 224 0.875 bilinear
62 efficientnet_b2 67.8 32.2 88.2 11.8 9.11 260 0.89 bicubic
63 hrnet_w44 67.77 32.23 87.53 12.47 67.06 224 0.875 bilinear
64 hrnet_w48 67.77 32.23 87.42 12.58 77.47 224 0.875 bilinear
65 xception 67.67 32.33 87.57 12.43 22.86 299 0.8975 bicubic
66 dla169 67.61 32.39 87.56 12.44 53.99 224 0.875 bilinear
67 gluon_inception_v3 67.59 32.41 87.46 12.54 23.83 299 0.875 bicubic
68 hrnet_w40 67.59 32.41 87.13 12.87 57.56 224 0.875 bilinear
69 gluon_resnet101_v1c 67.56 32.44 87.16 12.84 44.57 224 0.875 bicubic
70 efficientnet_b1 67.55 32.45 87.29 12.71 7.79 240 0.882 bicubic
71 seresnet152 67.55 32.45 87.39 12.61 66.82 224 0.875 bilinear
72 res2net50_26w_8s 67.53 32.47 87.27 12.73 48.4 224 0.875 bilinear
73 tf_efficientnet_b1_ap 67.52 32.48 87.77 12.23 7.79 240 0.882 bicubic
74 tf_efficientnet_cc_b1_8e 67.48 32.52 87.31 12.69 39.72 240 0.882 bicubic
75 gluon_resnet101_v1b 67.45 32.55 87.23 12.77 44.55 224 0.875 bicubic
76 res2net101_26w_4s 67.45 32.55 87.01 12.99 45.21 224 0.875 bilinear
77 seresnet101 67.15 32.85 87.05 12.95 49.33 224 0.875 bilinear
78 gluon_resnet50_v1s 67.1 32.9 86.86 13.14 25.68 224 0.875 bicubic
79 dla60x 67.08 32.92 87.17 12.83 17.65 224 0.875 bilinear
80 dla60_res2net 67.03 32.97 87.14 12.86 21.15 224 0.875 bilinear
81 resnet152 67.02 32.98 87.57 12.43 60.19 224 0.875 bilinear
82 dla102x 67 33 86.77 13.23 26.77 224 0.875 bilinear
83 mixnet_l 66.97 33.03 86.94 13.06 7.33 224 0.875 bicubic
84 res2net50_26w_6s 66.91 33.09 86.9 13.1 37.05 224 0.875 bilinear
85 tf_efficientnet_b1 66.89 33.11 87.04 12.96 7.79 240 0.882 bicubic
86 resnext50_32x4d 66.88 33.12 86.36 13.64 25.03 224 0.875 bicubic
87 tf_efficientnet_em 66.87 33.13 86.98 13.02 6.9 240 0.882 bicubic
88 resnet50 66.81 33.19 87 13 25.56 224 0.875 bicubic
89 hrnet_w32 66.79 33.21 87.29 12.71 41.23 224 0.875 bilinear
90 tf_mixnet_l 66.78 33.22 86.46 13.54 7.33 224 0.875 bicubic
91 hrnet_w30 66.76 33.24 86.79 13.21 37.71 224 0.875 bilinear
92 wide_resnet101_2 66.68 33.32 87.04 12.96 126.89 224 0.875 bilinear
93 wide_resnet50_2 66.65 33.35 86.81 13.19 68.88 224 0.875 bilinear
94 dla60_res2next 66.64 33.36 87.02 12.98 17.33 224 0.875 bilinear
95 adv_inception_v3 66.6 33.4 86.56 13.44 23.83 299 0.875 bicubic
96 dla102 66.55 33.45 86.91 13.09 33.73 224 0.875 bilinear
97 gluon_resnet50_v1c 66.54 33.46 86.16 13.84 25.58 224 0.875 bicubic
98 tf_inception_v3 66.42 33.58 86.68 13.32 23.83 299 0.875 bicubic
99 seresnet50 66.24 33.76 86.33 13.67 28.09 224 0.875 bilinear
100 tf_efficientnet_cc_b0_8e 66.21 33.79 86.22 13.78 24.01 224 0.875 bicubic
101 tv_resnext50_32x4d 66.18 33.82 86.04 13.96 25.03 224 0.875 bilinear
102 res2net50_26w_4s 66.17 33.83 86.6 13.4 25.7 224 0.875 bilinear
103 inception_v3 66.12 33.88 86.34 13.66 27.16 299 0.875 bicubic
104 gluon_resnet50_v1b 66.04 33.96 86.27 13.73 25.56 224 0.875 bicubic
105 res2net50_14w_8s 66.02 33.98 86.24 13.76 25.06 224 0.875 bilinear
106 densenet161 65.85 34.15 86.46 13.54 28.68 224 0.875 bicubic
107 res2next50 65.85 34.15 85.83 14.17 24.67 224 0.875 bilinear
108 resnet101 65.68 34.32 85.98 14.02 44.55 224 0.875 bilinear
109 dpn68b 65.6 34.4 85.94 14.06 12.61 224 0.875 bicubic
110 tf_efficientnet_b0_ap 65.49 34.51 85.55 14.45 5.29 224 0.875 bicubic
111 res2net50_48w_2s 65.32 34.68 85.96 14.04 25.29 224 0.875 bilinear
112 densenet201 65.28 34.72 85.67 14.33 20.01 224 0.875 bicubic
113 tf_efficientnet_es 65.24 34.76 85.54 14.46 5.44 224 0.875 bicubic
114 dla60 65.22 34.78 85.75 14.25 22.33 224 0.875 bilinear
115 tf_efficientnet_cc_b0_4e 65.13 34.87 85.13 14.87 13.31 224 0.875 bicubic
116 seresnext26_32x4d 65.04 34.96 85.65 14.35 16.79 224 0.875 bicubic
117 hrnet_w18 64.91 35.09 85.75 14.25 21.3 224 0.875 bilinear
118 densenet169 64.78 35.22 85.25 14.75 14.15 224 0.875 bicubic
119 mixnet_m 64.69 35.31 85.47 14.53 5.01 224 0.875 bicubic
120 resnet26d 64.63 35.37 85.12 14.88 16.01 224 0.875 bicubic
121 efficientnet_b0 64.58 35.42 85.89 14.11 5.29 224 0.875 bicubic
122 tf_efficientnet_b0 64.29 35.71 85.25 14.75 5.29 224 0.875 bicubic
123 tf_mixnet_m 64.27 35.73 85.09 14.91 5.01 224 0.875 bicubic
124 dpn68 64.22 35.78 85.18 14.82 12.61 224 0.875 bicubic
125 tf_mixnet_s 63.59 36.41 84.27 15.73 4.13 224 0.875 bicubic
126 resnet26 63.45 36.55 84.27 15.73 16 224 0.875 bicubic
127 mixnet_s 63.38 36.62 84.71 15.29 4.13 224 0.875 bicubic
128 tv_resnet50 63.33 36.67 84.65 15.35 25.56 224 0.875 bilinear
129 mobilenetv3_rw 63.23 36.77 84.52 15.48 5.48 224 0.875 bicubic
130 semnasnet_100 63.12 36.88 84.53 15.47 3.89 224 0.875 bicubic
131 densenet121 62.94 37.06 84.26 15.74 7.98 224 0.875 bicubic
132 seresnet34 62.89 37.11 84.22 15.78 21.96 224 0.875 bilinear
133 hrnet_w18_small_v2 62.83 37.17 83.97 16.03 15.6 224 0.875 bilinear
134 resnet34 62.82 37.18 84.12 15.88 21.8 224 0.875 bilinear
135 swsl_resnet18 62.73 37.27 84.3 15.7 11.69 224 0.875 bilinear
136 gluon_resnet34_v1b 62.56 37.44 84 16 21.8 224 0.875 bicubic
137 dla34 62.51 37.49 83.92 16.08 15.78 224 0.875 bilinear
138 tf_mobilenetv3_large_100 62.47 37.53 83.96 16.04 5.48 224 0.875 bilinear
139 fbnetc_100 62.43 37.57 83.39 16.61 5.57 224 0.875 bilinear
140 mnasnet_100 61.91 38.09 83.71 16.29 4.38 224 0.875 bicubic
141 ssl_resnet18 61.49 38.51 83.33 16.67 11.69 224 0.875 bilinear
142 spnasnet_100 61.21 38.79 82.77 17.23 4.42 224 0.875 bilinear
143 tv_resnet34 61.2 38.8 82.72 17.28 21.8 224 0.875 bilinear
144 tf_mobilenetv3_large_075 60.38 39.62 81.96 18.04 3.99 224 0.875 bilinear
145 seresnet18 59.81 40.19 81.68 18.32 11.78 224 0.875 bicubic
146 tf_mobilenetv3_large_minimal_100 59.07 40.93 81.14 18.86 3.92 224 0.875 bilinear
147 hrnet_w18_small 58.97 41.03 81.34 18.66 13.19 224 0.875 bilinear
148 gluon_resnet18_v1b 58.32 41.68 80.96 19.04 11.69 224 0.875 bicubic
149 resnet18 57.18 42.82 80.19 19.81 11.69 224 0.875 bilinear
150 dla60x_c 56.02 43.98 78.96 21.04 1.34 224 0.875 bilinear
151 tf_mobilenetv3_small_100 54.51 45.49 77.08 22.92 2.54 224 0.875 bilinear
152 dla46x_c 53.08 46.92 76.84 23.16 1.08 224 0.875 bilinear
153 dla46_c 52.2 47.8 75.68 24.32 1.31 224 0.875 bilinear
154 tf_mobilenetv3_small_075 52.15 47.85 75.46 24.54 2.04 224 0.875 bilinear
155 tf_mobilenetv3_small_minimal_100 49.53 50.47 73.05 26.95 2.04 224 0.875 bilinear

@ -0,0 +1,165 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,58.8104,41.1896,81.0765,18.9235,828.41,224,0.875,bilinear
ig_resnext101_32x32d,58.3859,41.6141,80.3808,19.6192,468.53,224,0.875,bilinear
ig_resnext101_32x16d,57.6903,42.3097,79.9053,20.0947,194.03,224,0.875,bilinear
swsl_resnext101_32x16d,57.4584,42.5416,80.3848,19.6152,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,56.4385,43.5615,78.9444,21.0556,88.79,224,0.875,bilinear
ig_resnext101_32x8d,54.9176,45.0824,77.5335,22.4665,88.79,224,0.875,bilinear
swsl_resnext101_32x4d,53.6029,46.3971,76.3466,23.6534,44.18,224,0.875,bilinear
swsl_resnext50_32x4d,50.4372,49.5628,73.3675,26.6325,25.03,224,0.875,bilinear
swsl_resnet50,49.5412,50.4588,72.3339,27.6661,25.56,224,0.875,bilinear
tf_efficientnet_b8_ap,45.7741,54.2259,67.9106,32.0894,87.41,672,0.954,bicubic
tf_efficientnet_b8,42.508,57.492,64.857,35.143,87.41,672,0.954,bicubic
tf_efficientnet_b7,41.4314,58.5686,63.0175,36.9825,66.35,600,0.949,bicubic
tf_efficientnet_b7_ap,41.4294,58.5706,62.8741,37.1259,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,41.4176,58.5824,62.0841,37.9159,30.39,456,0.934,bicubic
tf_efficientnet_b6_ap,41.0993,58.9007,62.3553,37.6447,43.04,528,0.942,bicubic
tf_efficientnet_b4_ap,40.4842,59.5158,61.7226,38.2774,19.34,380,0.922,bicubic
tf_efficientnet_b5,38.356,61.644,59.9128,40.0872,30.39,456,0.934,bicubic
tf_efficientnet_b3_ap,37.0552,62.9448,57.2403,42.7597,12.23,300,0.904,bicubic
swsl_resnet18,35.8584,64.1416,58.4547,41.5453,11.69,224,0.875,bilinear
ssl_resnext101_32x16d,34.6028,65.3972,55.9315,44.0685,194.03,224,0.875,bilinear
tf_efficientnet_b4,34.0643,65.9357,54.1984,45.8016,19.34,380,0.922,bicubic
ssl_resnext101_32x8d,34.0172,65.9828,55.6014,44.3986,88.79,224,0.875,bilinear
tf_efficientnet_b6,33.9975,66.0025,54.5442,45.4558,43.04,528,0.942,bicubic
tf_efficientnet_b3,32.8598,67.1402,52.9505,47.0495,12.23,300,0.904,bicubic
inception_resnet_v2,32.7379,67.2621,50.6475,49.3525,55.84,299,0.8975,bicubic
gluon_resnet152_v1d,32.734,67.266,51.0877,48.9123,60.21,224,0.875,bicubic
tf_efficientnet_b2_ap,32.6809,67.3191,52.2392,47.7608,9.11,260,0.89,bicubic
nasnetalarge,32.5964,67.4036,49.7789,50.2211,88.75,331,0.875,bicubic
pnasnet5large,32.5296,67.4704,50.1916,49.8084,86.06,331,0.875,bicubic
ens_adv_inception_resnet_v2,32.3724,67.6276,50.4274,49.5726,55.84,299,0.8975,bicubic
gluon_resnet152_v1s,32.3312,67.6688,50.5257,49.4743,60.32,224,0.875,bicubic
gluon_seresnext101_64x4d,32.2054,67.7946,50.3193,49.6807,88.23,224,0.875,bicubic
gluon_seresnext101_32x4d,32.1071,67.8929,51.237,48.763,48.96,224,0.875,bicubic
efficientnet_b3a,31.7318,68.2682,51.3254,48.6746,12.23,320,1,bicubic
efficientnet_b3,31.555,68.445,51.2763,48.7237,12.23,300,0.904,bicubic
resnet50,31.5471,68.4529,50.17,49.83,25.56,224,0.875,bicubic
ssl_resnext101_32x4d,31.4233,68.5767,52.1213,47.8787,44.18,224,0.875,bilinear
inception_v4,31.3781,68.6219,49.2444,50.7556,42.68,299,0.875,bicubic
gluon_resnet101_v1s,31.1148,68.8852,49.7927,50.2073,44.67,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,31.0873,68.9127,50.7615,49.2385,24.01,224,0.875,bicubic
gluon_resnet152_v1c,30.991,69.009,48.9241,51.0759,60.21,224,0.875,bicubic
gluon_resnext101_64x4d,30.9871,69.0129,48.5488,51.4512,83.46,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,30.8986,69.1014,50.0796,49.9204,39.72,240,0.882,bicubic
gluon_resnext101_32x4d,30.877,69.123,48.537,51.463,44.18,224,0.875,bicubic
dpn107,30.6785,69.3215,48.8102,51.1898,86.92,224,0.875,bicubic
gluon_resnet152_v1b,30.6235,69.3765,48.5213,51.4787,60.19,224,0.875,bicubic
ssl_resnext50_32x4d,30.594,69.406,50.6573,49.3427,25.03,224,0.875,bilinear
gluon_resnet101_v1d,30.5233,69.4767,47.9495,52.0505,44.57,224,0.875,bicubic
efficientnet_b2a,30.4349,69.5651,49.6984,50.3016,9.11,288,1,bicubic
tf_efficientnet_b1_ap,30.4211,69.5789,49.5529,50.4471,7.79,240,0.882,bicubic
dpn98,30.0674,69.9326,48.2442,51.7558,61.57,224,0.875,bicubic
tf_efficientnet_b2,30.0261,69.9739,49.5805,50.4195,9.11,260,0.89,bicubic
dpn131,30.0242,69.9758,48.146,51.854,79.25,224,0.875,bicubic
senet154,30.0006,69.9994,48.034,51.966,115.09,224,0.875,bilinear
dpn92,29.9534,70.0466,49.1619,50.8381,37.67,224,0.875,bicubic
gluon_senet154,29.8768,70.1232,47.8944,52.1056,115.09,224,0.875,bicubic
xception,29.865,70.135,48.6864,51.3136,22.86,299,0.8975,bicubic
adv_inception_v3,29.8178,70.1822,47.8473,52.1527,23.83,299,0.875,bicubic
efficientnet_b2,29.6154,70.3846,48.7767,51.2233,9.11,260,0.875,bicubic
gluon_xception65,29.5506,70.4494,47.5054,52.4946,39.92,299,0.875,bicubic
resnext101_32x8d,29.4386,70.5614,48.4859,51.5141,88.79,224,0.875,bilinear
ssl_resnet50,29.4229,70.5771,49.7809,50.2191,25.56,224,0.875,bilinear
gluon_inception_v3,29.1242,70.8758,46.9591,53.0409,23.83,299,0.875,bicubic
hrnet_w64,28.9886,71.0114,47.1418,52.8582,128.06,224,0.875,bilinear
tf_efficientnet_b1,28.8864,71.1136,47.5034,52.4966,7.79,240,0.882,bicubic
gluon_resnet101_v1b,28.8785,71.1215,46.3892,53.6108,44.55,224,0.875,bicubic
gluon_seresnext50_32x4d,28.6506,71.3494,46.4364,53.5636,27.56,224,0.875,bicubic
hrnet_w40,28.6408,71.3592,47.4543,52.5457,57.56,224,0.875,bilinear
resnet152,28.5327,71.4673,47.1182,52.8818,60.19,224,0.875,bilinear
hrnet_w48,28.4128,71.5872,47.5859,52.4141,77.47,224,0.875,bilinear
gluon_resnext50_32x4d,28.3755,71.6245,45.3281,54.6719,25.03,224,0.875,bicubic
tf_efficientnet_b0_ap,28.346,71.654,47.5309,52.4691,5.29,224,0.875,bicubic
tf_efficientnet_cc_b0_4e,28.3146,71.6854,47.3639,52.6361,13.31,224,0.875,bicubic
dla102x2,28.3126,71.6874,46.7606,53.2394,41.75,224,0.875,bilinear
dla169,28.3126,71.6874,47.3914,52.6086,53.99,224,0.875,bilinear
mixnet_xl,28.2871,71.7129,46.7016,53.2984,11.9,224,0.875,bicubic
gluon_resnet50_v1d,28.2458,71.7542,45.8783,54.1217,25.58,224,0.875,bicubic
wide_resnet101_2,28.1082,71.8918,46.401,53.599,126.89,224,0.875,bilinear
gluon_resnet101_v1c,28.1043,71.8957,45.9608,54.0392,44.57,224,0.875,bicubic
densenet161,28.0807,71.9193,46.6407,53.3593,28.68,224,0.875,bicubic
dpn68b,27.8842,72.1158,47.468,52.532,12.61,224,0.875,bicubic
tf_inception_v3,27.7801,72.2199,45.7211,54.2789,23.83,299,0.875,bicubic
res2net101_26w_4s,27.7683,72.2317,45.1787,54.8213,45.21,224,0.875,bilinear
hrnet_w44,27.6209,72.3791,45.837,54.163,67.06,224,0.875,bilinear
inception_v3,27.5561,72.4439,45.2652,54.7348,27.16,299,0.875,bicubic
hrnet_w30,27.3812,72.6188,46.5543,53.4457,37.71,224,0.875,bilinear
hrnet_w32,27.3694,72.6306,45.9942,54.0058,41.23,224,0.875,bilinear
gluon_resnet50_v1s,27.3261,72.6739,45.222,54.778,25.68,224,0.875,bicubic
densenet201,27.2652,72.7348,46.2222,53.7778,20.01,224,0.875,bicubic
res2net50_26w_8s,27.0785,72.9215,44.4281,55.5719,48.4,224,0.875,bilinear
dla102x,27.0609,72.9391,45.4754,54.5246,26.77,224,0.875,bilinear
resnet101,26.9626,73.0374,45.2337,54.7663,44.55,224,0.875,bilinear
resnext50d_32x4d,26.8761,73.1239,44.4359,55.5641,25.05,224,0.875,bicubic
densenet169,26.829,73.171,45.3733,54.6267,14.15,224,0.875,bicubic
seresnext101_32x4d,26.8113,73.1887,43.4966,56.5034,48.96,224,0.875,bilinear
seresnet152,26.6757,73.3243,43.9466,56.0534,66.82,224,0.875,bilinear
tf_efficientnet_el,26.6226,73.3774,44.6482,55.3518,10.59,300,0.904,bicubic
res2net50_26w_6s,26.5951,73.4049,43.9899,56.0101,37.05,224,0.875,bilinear
dla60x,26.5519,73.4481,45.0235,54.9765,17.65,224,0.875,bilinear
tf_efficientnet_b0,26.4851,73.5149,45.6464,54.3536,5.29,224,0.875,bicubic
res2net50_14w_8s,26.4831,73.5169,44.3711,55.6289,25.06,224,0.875,bilinear
gluon_resnet50_v1b,26.436,73.564,44.0351,55.9649,25.56,224,0.875,bicubic
dpn68,26.1294,73.8706,44.2276,55.7724,12.61,224,0.875,bicubic
resnext50_32x4d,26.1157,73.8843,42.9798,57.0202,25.03,224,0.875,bicubic
hrnet_w18,25.986,74.014,44.8132,55.1868,21.3,224,0.875,bilinear
resnet34,25.8877,74.1123,43.982,56.018,21.8,224,0.875,bilinear
res2net50_26w_4s,25.8661,74.1339,43.1547,56.8453,25.7,224,0.875,bilinear
gluon_resnet50_v1c,25.7836,74.2164,43.0309,56.9691,25.58,224,0.875,bicubic
selecsls60,25.7285,74.2715,44.0645,55.9355,30.67,224,0.875,bicubic
dla60_res2net,25.6519,74.3481,43.5988,56.4012,21.15,224,0.875,bilinear
dla60_res2next,25.6401,74.3599,43.6696,56.3304,17.33,224,0.875,bilinear
mixnet_l,25.5124,74.4876,43.4554,56.5446,7.33,224,0.875,bicubic
efficientnet_b1,25.4692,74.5308,43.2844,56.7156,7.79,240,0.875,bicubic
tv_resnext50_32x4d,25.4554,74.5446,42.7872,57.2128,25.03,224,0.875,bilinear
tf_mixnet_l,25.422,74.578,42.5337,57.4663,7.33,224,0.875,bicubic
res2next50,25.3886,74.6114,42.5082,57.4918,24.67,224,0.875,bilinear
seresnet101,25.3336,74.6664,42.8246,57.1754,49.33,224,0.875,bilinear
selecsls60b,25.3316,74.6684,43.5595,56.4405,32.77,224,0.875,bicubic
dla102,25.3159,74.6841,43.8268,56.1732,33.73,224,0.875,bilinear
wide_resnet50_2,25.308,74.692,42.1781,57.8219,68.88,224,0.875,bilinear
seresnext50_32x4d,25.2098,74.7902,41.9364,58.0636,27.56,224,0.875,bilinear
res2net50_48w_2s,25.027,74.973,42.2075,57.7925,25.29,224,0.875,bilinear
efficientnet_b0,25.0152,74.9848,42.7872,57.2128,5.29,224,0.875,bicubic
gluon_resnet34_v1b,24.9386,75.0614,42.2429,57.7571,21.8,224,0.875,bicubic
dla60,24.9327,75.0673,43.2962,56.7038,22.33,224,0.875,bilinear
tf_efficientnet_em,24.5416,75.4584,42.4119,57.5881,6.9,240,0.882,bicubic
tv_resnet50,24.07,75.93,41.3134,58.6866,25.56,224,0.875,bilinear
seresnet34,24.0268,75.9732,41.9089,58.0911,21.96,224,0.875,bilinear
densenet121,23.8441,76.1559,41.9246,58.0754,7.98,224,0.875,bicubic
tf_efficientnet_es,23.8185,76.1815,41.3311,58.6689,5.44,224,0.875,bicubic
mixnet_m,23.7104,76.2896,41.1405,58.8595,5.01,224,0.875,bicubic
dla34,23.6692,76.3308,41.5512,58.4488,15.78,224,0.875,bilinear
seresnet50,23.6515,76.3485,40.0912,59.9088,28.09,224,0.875,bilinear
tf_mixnet_m,23.4844,76.5156,40.9892,59.0108,5.01,224,0.875,bicubic
tv_resnet34,23.4727,76.5273,41.3665,58.6335,21.8,224,0.875,bilinear
selecsls42b,23.3567,76.6433,40.6768,59.3232,32.46,224,0.875,bicubic
mobilenetv3_rw,22.6296,77.3704,40.3741,59.6259,5.48,224,0.875,bicubic
tf_mobilenetv3_large_100,22.5687,77.4313,39.7669,60.2331,5.48,224,0.875,bilinear
hrnet_w18_small_v2,22.3369,77.6631,39.8613,60.1387,15.6,224,0.875,bilinear
seresnext26tn_32x4d,21.991,78.009,38.4818,61.5182,16.81,224,0.875,bicubic
seresnext26t_32x4d,21.9851,78.0149,38.5702,61.4298,16.82,224,0.875,bicubic
resnet26d,21.9065,78.0935,38.6193,61.3807,16.01,224,0.875,bicubic
semnasnet_100,21.9026,78.0974,38.5997,61.4003,3.89,224,0.875,bicubic
gluon_resnet18_v1b,21.5489,78.4511,38.8689,61.1311,11.69,224,0.875,bicubic
fbnetc_100,21.484,78.516,38.1615,61.8385,5.57,224,0.875,bilinear
mnasnet_100,21.3504,78.6496,37.7193,62.2807,4.38,224,0.875,bicubic
resnet26,21.2954,78.7046,38.018,61.982,16,224,0.875,bicubic
ssl_resnet18,21.2777,78.7223,39.1126,60.8874,11.69,224,0.875,bilinear
mixnet_s,21.2541,78.7459,38.187,61.813,4.13,224,0.875,bicubic
seresnext26d_32x4d,21.2521,78.7479,37.3106,62.6894,16.81,224,0.875,bicubic
seresnext26_32x4d,21.093,78.907,37.6329,62.3671,16.79,224,0.875,bicubic
spnasnet_100,20.8631,79.1369,37.8962,62.1038,4.42,224,0.875,bilinear
seresnet18,20.8375,79.1625,37.6191,62.3809,11.78,224,0.875,bicubic
tf_mixnet_s,20.47,79.53,36.6071,63.3929,4.13,224,0.875,bicubic
hrnet_w18_small,20.3679,79.6321,37.0925,62.9075,13.19,224,0.875,bilinear
tf_mobilenetv3_large_075,20.3659,79.6341,36.7643,63.2357,3.99,224,0.875,bilinear
resnet18,20.2283,79.7717,37.2615,62.7385,11.69,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,20.1222,79.8778,36.9078,63.0922,3.92,224,0.875,bilinear
dla60x_c,16.31,83.69,31.7613,68.2387,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,16.2275,83.7725,31.2229,68.7771,2.54,224,0.875,bilinear
tf_mobilenetv3_small_075,14.9443,85.0557,29.5722,70.4278,2.04,224,0.875,bilinear
dla46_c,14.6574,85.3426,29.3796,70.6204,1.31,224,0.875,bilinear
dla46x_c,14.3823,85.6177,29.191,70.809,1.08,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,13.9637,86.0363,27.9884,72.0116,2.04,224,0.875,bilinear
1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d 58.8104 41.1896 81.0765 18.9235 828.41 224 0.875 bilinear
3 ig_resnext101_32x32d 58.3859 41.6141 80.3808 19.6192 468.53 224 0.875 bilinear
4 ig_resnext101_32x16d 57.6903 42.3097 79.9053 20.0947 194.03 224 0.875 bilinear
5 swsl_resnext101_32x16d 57.4584 42.5416 80.3848 19.6152 194.03 224 0.875 bilinear
6 swsl_resnext101_32x8d 56.4385 43.5615 78.9444 21.0556 88.79 224 0.875 bilinear
7 ig_resnext101_32x8d 54.9176 45.0824 77.5335 22.4665 88.79 224 0.875 bilinear
8 swsl_resnext101_32x4d 53.6029 46.3971 76.3466 23.6534 44.18 224 0.875 bilinear
9 swsl_resnext50_32x4d 50.4372 49.5628 73.3675 26.6325 25.03 224 0.875 bilinear
10 swsl_resnet50 49.5412 50.4588 72.3339 27.6661 25.56 224 0.875 bilinear
11 tf_efficientnet_b8_ap 45.7741 54.2259 67.9106 32.0894 87.41 672 0.954 bicubic
12 tf_efficientnet_b8 42.508 57.492 64.857 35.143 87.41 672 0.954 bicubic
13 tf_efficientnet_b7 41.4314 58.5686 63.0175 36.9825 66.35 600 0.949 bicubic
14 tf_efficientnet_b7_ap 41.4294 58.5706 62.8741 37.1259 66.35 600 0.949 bicubic
15 tf_efficientnet_b5_ap 41.4176 58.5824 62.0841 37.9159 30.39 456 0.934 bicubic
16 tf_efficientnet_b6_ap 41.0993 58.9007 62.3553 37.6447 43.04 528 0.942 bicubic
17 tf_efficientnet_b4_ap 40.4842 59.5158 61.7226 38.2774 19.34 380 0.922 bicubic
18 tf_efficientnet_b5 38.356 61.644 59.9128 40.0872 30.39 456 0.934 bicubic
19 tf_efficientnet_b3_ap 37.0552 62.9448 57.2403 42.7597 12.23 300 0.904 bicubic
20 swsl_resnet18 35.8584 64.1416 58.4547 41.5453 11.69 224 0.875 bilinear
21 ssl_resnext101_32x16d 34.6028 65.3972 55.9315 44.0685 194.03 224 0.875 bilinear
22 tf_efficientnet_b4 34.0643 65.9357 54.1984 45.8016 19.34 380 0.922 bicubic
23 ssl_resnext101_32x8d 34.0172 65.9828 55.6014 44.3986 88.79 224 0.875 bilinear
24 tf_efficientnet_b6 33.9975 66.0025 54.5442 45.4558 43.04 528 0.942 bicubic
25 tf_efficientnet_b3 32.8598 67.1402 52.9505 47.0495 12.23 300 0.904 bicubic
26 inception_resnet_v2 32.7379 67.2621 50.6475 49.3525 55.84 299 0.8975 bicubic
27 gluon_resnet152_v1d 32.734 67.266 51.0877 48.9123 60.21 224 0.875 bicubic
28 tf_efficientnet_b2_ap 32.6809 67.3191 52.2392 47.7608 9.11 260 0.89 bicubic
29 nasnetalarge 32.5964 67.4036 49.7789 50.2211 88.75 331 0.875 bicubic
30 pnasnet5large 32.5296 67.4704 50.1916 49.8084 86.06 331 0.875 bicubic
31 ens_adv_inception_resnet_v2 32.3724 67.6276 50.4274 49.5726 55.84 299 0.8975 bicubic
32 gluon_resnet152_v1s 32.3312 67.6688 50.5257 49.4743 60.32 224 0.875 bicubic
33 gluon_seresnext101_64x4d 32.2054 67.7946 50.3193 49.6807 88.23 224 0.875 bicubic
34 gluon_seresnext101_32x4d 32.1071 67.8929 51.237 48.763 48.96 224 0.875 bicubic
35 efficientnet_b3a 31.7318 68.2682 51.3254 48.6746 12.23 320 1 bicubic
36 efficientnet_b3 31.555 68.445 51.2763 48.7237 12.23 300 0.904 bicubic
37 resnet50 31.5471 68.4529 50.17 49.83 25.56 224 0.875 bicubic
38 ssl_resnext101_32x4d 31.4233 68.5767 52.1213 47.8787 44.18 224 0.875 bilinear
39 inception_v4 31.3781 68.6219 49.2444 50.7556 42.68 299 0.875 bicubic
40 gluon_resnet101_v1s 31.1148 68.8852 49.7927 50.2073 44.67 224 0.875 bicubic
41 tf_efficientnet_cc_b0_8e 31.0873 68.9127 50.7615 49.2385 24.01 224 0.875 bicubic
42 gluon_resnet152_v1c 30.991 69.009 48.9241 51.0759 60.21 224 0.875 bicubic
43 gluon_resnext101_64x4d 30.9871 69.0129 48.5488 51.4512 83.46 224 0.875 bicubic
44 tf_efficientnet_cc_b1_8e 30.8986 69.1014 50.0796 49.9204 39.72 240 0.882 bicubic
45 gluon_resnext101_32x4d 30.877 69.123 48.537 51.463 44.18 224 0.875 bicubic
46 dpn107 30.6785 69.3215 48.8102 51.1898 86.92 224 0.875 bicubic
47 gluon_resnet152_v1b 30.6235 69.3765 48.5213 51.4787 60.19 224 0.875 bicubic
48 ssl_resnext50_32x4d 30.594 69.406 50.6573 49.3427 25.03 224 0.875 bilinear
49 gluon_resnet101_v1d 30.5233 69.4767 47.9495 52.0505 44.57 224 0.875 bicubic
50 efficientnet_b2a 30.4349 69.5651 49.6984 50.3016 9.11 288 1 bicubic
51 tf_efficientnet_b1_ap 30.4211 69.5789 49.5529 50.4471 7.79 240 0.882 bicubic
52 dpn98 30.0674 69.9326 48.2442 51.7558 61.57 224 0.875 bicubic
53 tf_efficientnet_b2 30.0261 69.9739 49.5805 50.4195 9.11 260 0.89 bicubic
54 dpn131 30.0242 69.9758 48.146 51.854 79.25 224 0.875 bicubic
55 senet154 30.0006 69.9994 48.034 51.966 115.09 224 0.875 bilinear
56 dpn92 29.9534 70.0466 49.1619 50.8381 37.67 224 0.875 bicubic
57 gluon_senet154 29.8768 70.1232 47.8944 52.1056 115.09 224 0.875 bicubic
58 xception 29.865 70.135 48.6864 51.3136 22.86 299 0.8975 bicubic
59 adv_inception_v3 29.8178 70.1822 47.8473 52.1527 23.83 299 0.875 bicubic
60 efficientnet_b2 29.6154 70.3846 48.7767 51.2233 9.11 260 0.875 bicubic
61 gluon_xception65 29.5506 70.4494 47.5054 52.4946 39.92 299 0.875 bicubic
62 resnext101_32x8d 29.4386 70.5614 48.4859 51.5141 88.79 224 0.875 bilinear
63 ssl_resnet50 29.4229 70.5771 49.7809 50.2191 25.56 224 0.875 bilinear
64 gluon_inception_v3 29.1242 70.8758 46.9591 53.0409 23.83 299 0.875 bicubic
65 hrnet_w64 28.9886 71.0114 47.1418 52.8582 128.06 224 0.875 bilinear
66 tf_efficientnet_b1 28.8864 71.1136 47.5034 52.4966 7.79 240 0.882 bicubic
67 gluon_resnet101_v1b 28.8785 71.1215 46.3892 53.6108 44.55 224 0.875 bicubic
68 gluon_seresnext50_32x4d 28.6506 71.3494 46.4364 53.5636 27.56 224 0.875 bicubic
69 hrnet_w40 28.6408 71.3592 47.4543 52.5457 57.56 224 0.875 bilinear
70 resnet152 28.5327 71.4673 47.1182 52.8818 60.19 224 0.875 bilinear
71 hrnet_w48 28.4128 71.5872 47.5859 52.4141 77.47 224 0.875 bilinear
72 gluon_resnext50_32x4d 28.3755 71.6245 45.3281 54.6719 25.03 224 0.875 bicubic
73 tf_efficientnet_b0_ap 28.346 71.654 47.5309 52.4691 5.29 224 0.875 bicubic
74 tf_efficientnet_cc_b0_4e 28.3146 71.6854 47.3639 52.6361 13.31 224 0.875 bicubic
75 dla102x2 28.3126 71.6874 46.7606 53.2394 41.75 224 0.875 bilinear
76 dla169 28.3126 71.6874 47.3914 52.6086 53.99 224 0.875 bilinear
77 mixnet_xl 28.2871 71.7129 46.7016 53.2984 11.9 224 0.875 bicubic
78 gluon_resnet50_v1d 28.2458 71.7542 45.8783 54.1217 25.58 224 0.875 bicubic
79 wide_resnet101_2 28.1082 71.8918 46.401 53.599 126.89 224 0.875 bilinear
80 gluon_resnet101_v1c 28.1043 71.8957 45.9608 54.0392 44.57 224 0.875 bicubic
81 densenet161 28.0807 71.9193 46.6407 53.3593 28.68 224 0.875 bicubic
82 dpn68b 27.8842 72.1158 47.468 52.532 12.61 224 0.875 bicubic
83 tf_inception_v3 27.7801 72.2199 45.7211 54.2789 23.83 299 0.875 bicubic
84 res2net101_26w_4s 27.7683 72.2317 45.1787 54.8213 45.21 224 0.875 bilinear
85 hrnet_w44 27.6209 72.3791 45.837 54.163 67.06 224 0.875 bilinear
86 inception_v3 27.5561 72.4439 45.2652 54.7348 27.16 299 0.875 bicubic
87 hrnet_w30 27.3812 72.6188 46.5543 53.4457 37.71 224 0.875 bilinear
88 hrnet_w32 27.3694 72.6306 45.9942 54.0058 41.23 224 0.875 bilinear
89 gluon_resnet50_v1s 27.3261 72.6739 45.222 54.778 25.68 224 0.875 bicubic
90 densenet201 27.2652 72.7348 46.2222 53.7778 20.01 224 0.875 bicubic
91 res2net50_26w_8s 27.0785 72.9215 44.4281 55.5719 48.4 224 0.875 bilinear
92 dla102x 27.0609 72.9391 45.4754 54.5246 26.77 224 0.875 bilinear
93 resnet101 26.9626 73.0374 45.2337 54.7663 44.55 224 0.875 bilinear
94 resnext50d_32x4d 26.8761 73.1239 44.4359 55.5641 25.05 224 0.875 bicubic
95 densenet169 26.829 73.171 45.3733 54.6267 14.15 224 0.875 bicubic
96 seresnext101_32x4d 26.8113 73.1887 43.4966 56.5034 48.96 224 0.875 bilinear
97 seresnet152 26.6757 73.3243 43.9466 56.0534 66.82 224 0.875 bilinear
98 tf_efficientnet_el 26.6226 73.3774 44.6482 55.3518 10.59 300 0.904 bicubic
99 res2net50_26w_6s 26.5951 73.4049 43.9899 56.0101 37.05 224 0.875 bilinear
100 dla60x 26.5519 73.4481 45.0235 54.9765 17.65 224 0.875 bilinear
101 tf_efficientnet_b0 26.4851 73.5149 45.6464 54.3536 5.29 224 0.875 bicubic
102 res2net50_14w_8s 26.4831 73.5169 44.3711 55.6289 25.06 224 0.875 bilinear
103 gluon_resnet50_v1b 26.436 73.564 44.0351 55.9649 25.56 224 0.875 bicubic
104 dpn68 26.1294 73.8706 44.2276 55.7724 12.61 224 0.875 bicubic
105 resnext50_32x4d 26.1157 73.8843 42.9798 57.0202 25.03 224 0.875 bicubic
106 hrnet_w18 25.986 74.014 44.8132 55.1868 21.3 224 0.875 bilinear
107 resnet34 25.8877 74.1123 43.982 56.018 21.8 224 0.875 bilinear
108 res2net50_26w_4s 25.8661 74.1339 43.1547 56.8453 25.7 224 0.875 bilinear
109 gluon_resnet50_v1c 25.7836 74.2164 43.0309 56.9691 25.58 224 0.875 bicubic
110 selecsls60 25.7285 74.2715 44.0645 55.9355 30.67 224 0.875 bicubic
111 dla60_res2net 25.6519 74.3481 43.5988 56.4012 21.15 224 0.875 bilinear
112 dla60_res2next 25.6401 74.3599 43.6696 56.3304 17.33 224 0.875 bilinear
113 mixnet_l 25.5124 74.4876 43.4554 56.5446 7.33 224 0.875 bicubic
114 efficientnet_b1 25.4692 74.5308 43.2844 56.7156 7.79 240 0.875 bicubic
115 tv_resnext50_32x4d 25.4554 74.5446 42.7872 57.2128 25.03 224 0.875 bilinear
116 tf_mixnet_l 25.422 74.578 42.5337 57.4663 7.33 224 0.875 bicubic
117 res2next50 25.3886 74.6114 42.5082 57.4918 24.67 224 0.875 bilinear
118 seresnet101 25.3336 74.6664 42.8246 57.1754 49.33 224 0.875 bilinear
119 selecsls60b 25.3316 74.6684 43.5595 56.4405 32.77 224 0.875 bicubic
120 dla102 25.3159 74.6841 43.8268 56.1732 33.73 224 0.875 bilinear
121 wide_resnet50_2 25.308 74.692 42.1781 57.8219 68.88 224 0.875 bilinear
122 seresnext50_32x4d 25.2098 74.7902 41.9364 58.0636 27.56 224 0.875 bilinear
123 res2net50_48w_2s 25.027 74.973 42.2075 57.7925 25.29 224 0.875 bilinear
124 efficientnet_b0 25.0152 74.9848 42.7872 57.2128 5.29 224 0.875 bicubic
125 gluon_resnet34_v1b 24.9386 75.0614 42.2429 57.7571 21.8 224 0.875 bicubic
126 dla60 24.9327 75.0673 43.2962 56.7038 22.33 224 0.875 bilinear
127 tf_efficientnet_em 24.5416 75.4584 42.4119 57.5881 6.9 240 0.882 bicubic
128 tv_resnet50 24.07 75.93 41.3134 58.6866 25.56 224 0.875 bilinear
129 seresnet34 24.0268 75.9732 41.9089 58.0911 21.96 224 0.875 bilinear
130 densenet121 23.8441 76.1559 41.9246 58.0754 7.98 224 0.875 bicubic
131 tf_efficientnet_es 23.8185 76.1815 41.3311 58.6689 5.44 224 0.875 bicubic
132 mixnet_m 23.7104 76.2896 41.1405 58.8595 5.01 224 0.875 bicubic
133 dla34 23.6692 76.3308 41.5512 58.4488 15.78 224 0.875 bilinear
134 seresnet50 23.6515 76.3485 40.0912 59.9088 28.09 224 0.875 bilinear
135 tf_mixnet_m 23.4844 76.5156 40.9892 59.0108 5.01 224 0.875 bicubic
136 tv_resnet34 23.4727 76.5273 41.3665 58.6335 21.8 224 0.875 bilinear
137 selecsls42b 23.3567 76.6433 40.6768 59.3232 32.46 224 0.875 bicubic
138 mobilenetv3_rw 22.6296 77.3704 40.3741 59.6259 5.48 224 0.875 bicubic
139 tf_mobilenetv3_large_100 22.5687 77.4313 39.7669 60.2331 5.48 224 0.875 bilinear
140 hrnet_w18_small_v2 22.3369 77.6631 39.8613 60.1387 15.6 224 0.875 bilinear
141 seresnext26tn_32x4d 21.991 78.009 38.4818 61.5182 16.81 224 0.875 bicubic
142 seresnext26t_32x4d 21.9851 78.0149 38.5702 61.4298 16.82 224 0.875 bicubic
143 resnet26d 21.9065 78.0935 38.6193 61.3807 16.01 224 0.875 bicubic
144 semnasnet_100 21.9026 78.0974 38.5997 61.4003 3.89 224 0.875 bicubic
145 gluon_resnet18_v1b 21.5489 78.4511 38.8689 61.1311 11.69 224 0.875 bicubic
146 fbnetc_100 21.484 78.516 38.1615 61.8385 5.57 224 0.875 bilinear
147 mnasnet_100 21.3504 78.6496 37.7193 62.2807 4.38 224 0.875 bicubic
148 resnet26 21.2954 78.7046 38.018 61.982 16 224 0.875 bicubic
149 ssl_resnet18 21.2777 78.7223 39.1126 60.8874 11.69 224 0.875 bilinear
150 mixnet_s 21.2541 78.7459 38.187 61.813 4.13 224 0.875 bicubic
151 seresnext26d_32x4d 21.2521 78.7479 37.3106 62.6894 16.81 224 0.875 bicubic
152 seresnext26_32x4d 21.093 78.907 37.6329 62.3671 16.79 224 0.875 bicubic
153 spnasnet_100 20.8631 79.1369 37.8962 62.1038 4.42 224 0.875 bilinear
154 seresnet18 20.8375 79.1625 37.6191 62.3809 11.78 224 0.875 bicubic
155 tf_mixnet_s 20.47 79.53 36.6071 63.3929 4.13 224 0.875 bicubic
156 hrnet_w18_small 20.3679 79.6321 37.0925 62.9075 13.19 224 0.875 bilinear
157 tf_mobilenetv3_large_075 20.3659 79.6341 36.7643 63.2357 3.99 224 0.875 bilinear
158 resnet18 20.2283 79.7717 37.2615 62.7385 11.69 224 0.875 bilinear
159 tf_mobilenetv3_large_minimal_100 20.1222 79.8778 36.9078 63.0922 3.92 224 0.875 bilinear
160 dla60x_c 16.31 83.69 31.7613 68.2387 1.34 224 0.875 bilinear
161 tf_mobilenetv3_small_100 16.2275 83.7725 31.2229 68.7771 2.54 224 0.875 bilinear
162 tf_mobilenetv3_small_075 14.9443 85.0557 29.5722 70.4278 2.04 224 0.875 bilinear
163 dla46_c 14.6574 85.3426 29.3796 70.6204 1.31 224 0.875 bilinear
164 dla46x_c 14.3823 85.6177 29.191 70.809 1.08 224 0.875 bilinear
165 tf_mobilenetv3_small_minimal_100 13.9637 86.0363 27.9884 72.0116 2.04 224 0.875 bilinear

@ -130,6 +130,8 @@ model_list = [
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b7', 'EfficientNet-B7 (RandAugment)', '1905.11946', batch_size=BATCH_SIZE//8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b8', 'EfficientNet-B8 (RandAugment)', '1905.11946', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b0_ap', 'EfficientNet-B0 (AdvProp)', '1911.09665',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b1_ap', 'EfficientNet-B1 (AdvProp)', '1911.09665',

@ -20,34 +20,40 @@ def natural_key(string_):
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
if class_to_idx is None:
class_to_idx = dict()
build_class_idx = True
else:
build_class_idx = False
labels = []
filenames = []
for root, subdirs, files in os.walk(folder, topdown=False):
rel_path = os.path.relpath(root, folder) if (root != folder) else ''
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
if build_class_idx and not subdirs:
class_to_idx[label] = None
for f in files:
base, ext = os.path.splitext(f)
if ext.lower() in types:
filenames.append(os.path.join(root, f))
labels.append(label)
if build_class_idx:
classes = sorted(class_to_idx.keys(), key=natural_key)
for idx, c in enumerate(classes):
class_to_idx[c] = idx
if class_to_idx is None:
# building class index
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
images_and_targets = zip(filenames, [class_to_idx[l] for l in labels])
if sort:
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
if build_class_idx:
return images_and_targets, classes, class_to_idx
return images_and_targets, class_to_idx
def load_class_map(filename, root=''):
class_to_idx = {}
class_map_path = filename
if not os.path.exists(class_map_path):
class_map_path = os.path.join(root, filename)
assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % filename
class_map_ext = os.path.splitext(filename)[-1].lower()
if class_map_ext == '.txt':
with open(class_map_path) as f:
class_to_idx = {v.strip(): k for k, v in enumerate(f)}
else:
return images_and_targets
assert False, 'Unsupported class map extension'
return class_to_idx
class Dataset(data.Dataset):
@ -56,19 +62,25 @@ class Dataset(data.Dataset):
self,
root,
load_bytes=False,
transform=None):
imgs, _, _ = find_images_and_targets(root)
if len(imgs) == 0:
transform=None,
class_map=''):
class_to_idx = None
if class_map:
class_to_idx = load_class_map(class_map, root)
images, class_to_idx = find_images_and_targets(root, class_to_idx=class_to_idx)
if len(images) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.samples = images
self.imgs = self.samples # torchvision ImageFolder compat
self.class_to_idx = class_to_idx
self.load_bytes = load_bytes
self.transform = transform
def __getitem__(self, index):
path, target = self.imgs[index]
path, target = self.samples[index]
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
@ -82,18 +94,17 @@ class Dataset(data.Dataset):
def filenames(self, indices=[], basename=False):
if indices:
if basename:
return [os.path.basename(self.imgs[i][0]) for i in indices]
return [os.path.basename(self.samples[i][0]) for i in indices]
else:
return [self.imgs[i][0] for i in indices]
return [self.samples[i][0] for i in indices]
else:
if basename:
return [os.path.basename(x[0]) for x in self.imgs]
return [os.path.basename(x[0]) for x in self.samples]
else:
return [x[0] for x in self.imgs]
return [x[0] for x in self.samples]
def _extract_tar_info(tarfile):
class_to_idx = {}
def _extract_tar_info(tarfile, class_to_idx=None, sort=True):
files = []
labels = []
for ti in tarfile.getmembers():
@ -101,26 +112,31 @@ def _extract_tar_info(tarfile):
continue
dirname, basename = os.path.split(ti.path)
label = os.path.basename(dirname)
class_to_idx[label] = None
ext = os.path.splitext(basename)[1]
if ext.lower() in IMG_EXTENSIONS:
files.append(ti)
labels.append(label)
for idx, c in enumerate(sorted(class_to_idx.keys(), key=natural_key)):
class_to_idx[c] = idx
if class_to_idx is None:
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
tarinfo_and_targets = zip(files, [class_to_idx[l] for l in labels])
tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path))
return tarinfo_and_targets
if sort:
tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path))
return tarinfo_and_targets, class_to_idx
class DatasetTar(data.Dataset):
def __init__(self, root, load_bytes=False, transform=None):
def __init__(self, root, load_bytes=False, transform=None, class_map=''):
class_to_idx = None
if class_map:
class_to_idx = load_class_map(class_map, root)
assert os.path.isfile(root)
self.root = root
with tarfile.open(root) as tf: # cannot keep this open across processes, reopen later
self.imgs = _extract_tar_info(tf)
self.samples, self.class_to_idx = _extract_tar_info(tf, class_to_idx)
self.tarfile = None # lazy init in __getitem__
self.load_bytes = load_bytes
self.transform = transform
@ -128,7 +144,7 @@ class DatasetTar(data.Dataset):
def __getitem__(self, index):
if self.tarfile is None:
self.tarfile = tarfile.open(self.root)
tarinfo, target = self.imgs[index]
tarinfo, target = self.samples[index]
iob = self.tarfile.extractfile(tarinfo)
img = iob.read() if self.load_bytes else Image.open(iob).convert('RGB')
if self.transform is not None:
@ -138,7 +154,7 @@ class DatasetTar(data.Dataset):
return img, target
def __len__(self):
return len(self.imgs)
return len(self.samples)
class AugMixDataset(torch.utils.data.Dataset):

@ -124,6 +124,9 @@ default_cfgs = {
'tf_efficientnet_b7': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth',
input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949),
'tf_efficientnet_b8': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth',
input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954),
'tf_efficientnet_b0_ap': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)),
@ -1059,9 +1062,20 @@ def tf_efficientnet_b7(pretrained=False, **kwargs):
return model
@register_model
def tf_efficientnet_b8(pretrained=False, **kwargs):
""" EfficientNet-B8. Tensorflow compatible variant """
# NOTE for train, drop_rate should be 0.5
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs)
return model
@register_model
def tf_efficientnet_b0_ap(pretrained=False, **kwargs):
""" EfficientNet-B0. Tensorflow compatible variant """
""" EfficientNet-B0 AdvProp. Tensorflow compatible variant """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
@ -1071,7 +1085,7 @@ def tf_efficientnet_b0_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b1_ap(pretrained=False, **kwargs):
""" EfficientNet-B1. Tensorflow compatible variant """
""" EfficientNet-B1 AdvProp. Tensorflow compatible variant """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
@ -1081,7 +1095,7 @@ def tf_efficientnet_b1_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b2_ap(pretrained=False, **kwargs):
""" EfficientNet-B2. Tensorflow compatible variant """
""" EfficientNet-B2 AdvProp. Tensorflow compatible variant """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
@ -1091,7 +1105,7 @@ def tf_efficientnet_b2_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b3_ap(pretrained=False, **kwargs):
""" EfficientNet-B3. Tensorflow compatible variant """
""" EfficientNet-B3 AdvProp. Tensorflow compatible variant """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
@ -1101,7 +1115,7 @@ def tf_efficientnet_b3_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b4_ap(pretrained=False, **kwargs):
""" EfficientNet-B4. Tensorflow compatible variant """
""" EfficientNet-B4 AdvProp. Tensorflow compatible variant """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
@ -1111,7 +1125,7 @@ def tf_efficientnet_b4_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b5_ap(pretrained=False, **kwargs):
""" EfficientNet-B5. Tensorflow compatible variant """
""" EfficientNet-B5 AdvProp. Tensorflow compatible variant """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_efficientnet(
@ -1121,7 +1135,7 @@ def tf_efficientnet_b5_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b6_ap(pretrained=False, **kwargs):
""" EfficientNet-B6. Tensorflow compatible variant """
""" EfficientNet-B6 AdvProp. Tensorflow compatible variant """
# NOTE for train, drop_rate should be 0.5
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
@ -1132,7 +1146,7 @@ def tf_efficientnet_b6_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b7_ap(pretrained=False, **kwargs):
""" EfficientNet-B7. Tensorflow compatible variant """
""" EfficientNet-B7 AdvProp. Tensorflow compatible variant """
# NOTE for train, drop_rate should be 0.5
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
@ -1143,7 +1157,7 @@ def tf_efficientnet_b7_ap(pretrained=False, **kwargs):
@register_model
def tf_efficientnet_b8_ap(pretrained=False, **kwargs):
""" EfficientNet-B7. Tensorflow compatible variant """
""" EfficientNet-B8 AdvProp. Tensorflow compatible variant """
# NOTE for train, drop_rate should be 0.5
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'

@ -42,7 +42,7 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth',
interpolation='bicubic'),
'resnet50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_am-6c502b37.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth',
interpolation='bicubic'),
'resnet50d': _cfg(
url='',

@ -315,7 +315,9 @@ def main():
else:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.local_rank == 0:
logging.info('Converted model to use Synchronized BatchNorm.')
logging.info(
'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
except Exception as e:
logging.error('Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1')
if has_apex:

@ -45,6 +45,8 @@ parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=1000,
help='Number classes in dataset')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")')
parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
@ -67,6 +69,8 @@ parser.add_argument('--use-ema', dest='use_ema', action='store_true',
help='use ema version of weights if present')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
def validate(args):
@ -104,10 +108,12 @@ def validate(args):
criterion = nn.CrossEntropyLoss().cuda()
#from torchvision.datasets import ImageNet
#dataset = ImageNet(args.data, split='val')
if os.path.splitext(args.data)[1] == '.tar' and os.path.isfile(args.data):
dataset = DatasetTar(args.data, load_bytes=args.tf_preprocessing)
dataset = DatasetTar(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
else:
dataset = Dataset(args.data, load_bytes=args.tf_preprocessing)
dataset = Dataset(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
crop_pct = 1.0 if test_time_pool else data_config['crop_pct']
loader = create_loader(
@ -201,9 +207,10 @@ def main():
model_cfgs = [(n, '') for n in model_names]
if len(model_cfgs):
results_file = args.results_file or './results-all.csv'
logging.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
header_written = False
with open('./results-all.csv', mode='w') as cf:
results = []
try:
for m, c in model_cfgs:
args.model = m
args.checkpoint = c
@ -212,15 +219,24 @@ def main():
result.update(r)
if args.checkpoint:
result['checkpoint'] = args.checkpoint
dw = csv.DictWriter(cf, fieldnames=result.keys())
if not header_written:
dw.writeheader()
header_written = True
dw.writerow(result)
cf.flush()
results.append(result)
except KeyboardInterrupt as e:
pass
results = sorted(results, key=lambda x: x['top1'], reverse=True)
if len(results):
write_results(results_file, results)
else:
validate(args)
def write_results(results_file, results):
with open(results_file, mode='w') as cf:
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()

Loading…
Cancel
Save