Add ResNet-RS models

pull/554/head
Aman Arora 4 years ago
parent 779107b693
commit 844993267b

@ -233,7 +233,23 @@ default_cfgs = {
interpolation='bicubic'), interpolation='bicubic'),
'resnetblur50': _cfg( 'resnetblur50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth',
interpolation='bicubic') interpolation='bicubic'),
# ResNet-RS models
'resnetrs50': _cfg(
interpolation='bicubic'),
'resnetrs101': _cfg(
interpolation='bicubic'),
'resnetrs152': _cfg(
interpolation='bicubic'),
'resnetrs200': _cfg(
interpolation='bicubic'),
'resnetrs270': _cfg(
interpolation='bicubic'),
'resnetrs350': _cfg(
interpolation='bicubic'),
'resnetrs420': _cfg(
interpolation='bicubic'),
} }
@ -426,7 +442,7 @@ def drop_blocks(drop_block_rate=0.):
def make_blocks( def make_blocks(
block_fn, channels, block_repeats, inplanes, reduce_first=1, output_stride=32, block_fn, channels, block_repeats, inplanes, reduce_first=1, output_stride=32,
down_kernel_size=1, avg_down=False, drop_block_rate=0., drop_path_rate=0., **kwargs): down_kernel_size=1, avg_down=False, drop_block_rate=0., drop_path_rate=0., first_conv_stride=1, **kwargs):
stages = [] stages = []
feature_info = [] feature_info = []
net_num_blocks = sum(block_repeats) net_num_blocks = sum(block_repeats)
@ -435,7 +451,7 @@ def make_blocks(
dilation = prev_dilation = 1 dilation = prev_dilation = 1
for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))): for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))):
stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it
stride = 1 if stage_idx == 0 else 2 stride = first_conv_stride if stage_idx == 0 else 2
if net_stride >= output_stride: if net_stride >= output_stride:
dilation *= stride dilation *= stride
stride = 1 stride = 1
@ -542,11 +558,12 @@ class ResNet(nn.Module):
cardinality=1, base_width=64, stem_width=64, stem_type='', cardinality=1, base_width=64, stem_width=64, stem_type='',
output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False, output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0., act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0.,
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None): drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None, skip_stem_max_pool=False):
block_args = block_args or dict() block_args = block_args or dict()
assert output_stride in (8, 16, 32) assert output_stride in (8, 16, 32)
self.num_classes = num_classes self.num_classes = num_classes
self.drop_rate = drop_rate self.drop_rate = drop_rate
self.skip_stem_max_pool = skip_stem_max_pool
super(ResNet, self).__init__() super(ResNet, self).__init__()
# Stem # Stem
@ -571,12 +588,17 @@ class ResNet(nn.Module):
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')] self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
# Stem Pooling # Stem Pooling
if not self.skip_stem_max_pool:
first_conv_stride = 1
if aa_layer is not None: if aa_layer is not None:
self.maxpool = nn.Sequential(*[ self.maxpool = nn.Sequential(*[
nn.MaxPool2d(kernel_size=3, stride=1, padding=1), nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=inplanes, stride=2)]) aa_layer(channels=inplanes, stride=2)])
else: else:
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
else:
self.maxpool = nn.Identity()
first_conv_stride = 2
# Feature Blocks # Feature Blocks
channels = [64, 128, 256, 512] channels = [64, 128, 256, 512]
@ -584,7 +606,7 @@ class ResNet(nn.Module):
block, channels, layers, inplanes, cardinality=cardinality, base_width=base_width, block, channels, layers, inplanes, cardinality=cardinality, base_width=base_width,
output_stride=output_stride, reduce_first=block_reduce_first, avg_down=avg_down, output_stride=output_stride, reduce_first=block_reduce_first, avg_down=avg_down,
down_kernel_size=down_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, down_kernel_size=down_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer,
drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, **block_args) drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, first_conv_stride=first_conv_stride, **block_args)
for stage in stage_modules: for stage in stage_modules:
self.add_module(*stage) # layer1, layer2, etc self.add_module(*stage) # layer1, layer2, etc
self.feature_info.extend(stage_feature_info) self.feature_info.extend(stage_feature_info)
@ -1053,6 +1075,63 @@ def ecaresnet50d(pretrained=False, **kwargs):
return _create_resnet('ecaresnet50d', pretrained, **model_args) return _create_resnet('ecaresnet50d', pretrained, **model_args)
@register_model
def resnetrs50(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs50', pretrained, **model_args)
@register_model
def resnetrs101(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs101', pretrained, **model_args)
@register_model
def resnetrs152(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs152', pretrained, **model_args)
@register_model
def resnetrs200(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs200', pretrained, **model_args)
@register_model
def resnetrs270(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs270', pretrained, **model_args)
@register_model
def resnetrs350(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs350', pretrained, **model_args)
@register_model
def resnetrs420(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('resnetrs420', pretrained, **model_args)
@register_model @register_model
def ecaresnet50d_pruned(pretrained=False, **kwargs): def ecaresnet50d_pruned(pretrained=False, **kwargs):
"""Constructs a ResNet-50-D model pruned with eca. """Constructs a ResNet-50-D model pruned with eca.

Loading…
Cancel
Save