Merge remote-tracking branch 'origin/master' into bits_and_tpu

pull/1239/head
Ross Wightman 3 years ago
commit 809c7bb1ec

@ -16,9 +16,9 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest, macOS-latest]
python: ['3.8']
torch: ['1.9.0']
torchvision: ['0.10.0']
python: ['3.9']
torch: ['1.10.0']
torchvision: ['0.11.1']
runs-on: ${{ matrix.os }}
steps:
@ -30,7 +30,7 @@ jobs:
- name: Install testing dependencies
run: |
python -m pip install --upgrade pip
pip install pytest pytest-timeout
pip install pytest pytest-timeout expecttest
- name: Install torch on mac
if: startsWith(matrix.os, 'macOS')
run: pip install --no-cache-dir torch==${{ matrix.torch }} torchvision==${{ matrix.torchvision }}

@ -4,9 +4,16 @@ import platform
import os
import fnmatch
try:
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
has_fx_feature_extraction = True
except ImportError:
has_fx_feature_extraction = False
import timm
from timm import list_models, create_model, set_scriptable, has_model_default_key, is_model_default_key, \
get_model_default_value
from timm.models.fx_features import _leaf_modules, _autowrap_functions
if hasattr(torch._C, '_jit_set_profiling_executor'):
# legacy executor is too slow to compile large models for unit tests
@ -38,6 +45,10 @@ TARGET_JIT_SIZE = 128
MAX_JIT_SIZE = 320
TARGET_FFEAT_SIZE = 96
MAX_FFEAT_SIZE = 256
TARGET_FWD_FX_SIZE = 128
MAX_FWD_FX_SIZE = 224
TARGET_BWD_FX_SIZE = 128
MAX_BWD_FX_SIZE = 224
def _get_input_size(model=None, model_name='', target=None):
@ -297,3 +308,135 @@ def test_model_forward_features(model_name, batch_size):
assert e == o.shape[1]
assert o.shape[0] == batch_size
assert not torch.isnan(o).any()
def _create_fx_model(model, train=False):
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
train_nodes, eval_nodes = get_graph_node_names(
model, tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)})
eval_return_nodes = [eval_nodes[-1]]
train_return_nodes = [train_nodes[-1]]
if train:
tracer = NodePathTracer(leaf_modules=list(_leaf_modules), autowrap_functions=list(_autowrap_functions))
graph = tracer.trace(model)
graph_nodes = list(reversed(graph.nodes))
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
graph_node_names = [n.name for n in graph_nodes]
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
fx_model = create_feature_extractor(
model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes,
tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)})
return fx_model
EXCLUDE_FX_FILTERS = []
# not enough memory to run fx on more models than other tests
if 'GITHUB_ACTIONS' in os.environ:
EXCLUDE_FX_FILTERS += [
'beit_large*',
'swin_large*',
'*resnext101_32x32d',
'resnetv2_152x2*',
]
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx(model_name, batch_size):
"""
Symbolically trace each model and run single forward pass through the resulting GraphModule
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
model = create_model(model_name, pretrained=False)
model.eval()
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
if max(input_size) > MAX_FWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
inputs = torch.randn((batch_size, *input_size))
outputs = model(inputs)
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
model = _create_fx_model(model)
fx_outputs = tuple(model(inputs).values())
if isinstance(fx_outputs, tuple):
fx_outputs = torch.cat(fx_outputs)
assert torch.all(fx_outputs == outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward_fx(model_name, batch_size):
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
if max(input_size) > MAX_BWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
model = create_model(model_name, pretrained=False, num_classes=42)
num_params = sum([x.numel() for x in model.parameters()])
model.train()
model = _create_fx_model(model, train=True)
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
outputs.mean().backward()
for n, x in model.named_parameters():
assert x.grad is not None, f'No gradient for {n}'
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
assert outputs.shape[-1] == 42
assert num_params == num_grad, 'Some parameters are missing gradients'
assert not torch.isnan(outputs).any(), 'Output included NaNs'
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
EXCLUDE_FX_JIT_FILTERS = [
'deit_*_distilled_patch16_224',
'levit*',
'pit_*_distilled_224',
] + EXCLUDE_FX_FILTERS
@pytest.mark.timeout(120)
@pytest.mark.parametrize(
'model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx_torchscript(model_name, batch_size):
"""Symbolically trace each model, script it, and run single forward pass"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
if max(input_size) > MAX_JIT_SIZE:
pytest.skip("Fixed input size model > limit.")
with set_scriptable(True):
model = create_model(model_name, pretrained=False)
model.eval()
model = torch.jit.script(_create_fx_model(model))
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'

@ -1,7 +1,11 @@
import os
from torchvision.datasets import CIFAR100, CIFAR10, MNIST, QMNIST, KMNIST, FashionMNIST,\
Places365, ImageNet, ImageFolder
from torchvision.datasets import CIFAR100, CIFAR10, MNIST, QMNIST, KMNIST, FashionMNIST, ImageNet, ImageFolder
try:
from torchvision.datasets import Places365
has_places365 = True
except ImportError:
has_places365 = False
try:
from torchvision.datasets import INaturalist
has_inaturalist = True
@ -104,6 +108,7 @@ def create_dataset(
split = '2021_valid'
ds = INaturalist(version=split, target_type=target_type, **torch_kwargs)
elif name == 'places365':
assert has_places365, 'Please update to a newer PyTorch and torchvision for Places365 dataset.'
if split in _TRAIN_SYNONYM:
split = 'train-standard'
elif split in _EVAL_SYNONYM:

@ -36,7 +36,7 @@ PREFETCH_SIZE = 2048 # examples to prefetch
def even_split_indices(split, n, num_examples):
partitions = [round(i * num_examples / n) for i in range(n + 1)]
return [f"{split}[{partitions[i]}:{partitions[i+1]}]" for i in range(n)]
return [f"{split}[{partitions[i]}:{partitions[i + 1]}]" for i in range(n)]
def get_class_labels(info):
@ -70,6 +70,7 @@ class ParserTfds(Parser):
components.
"""
def __init__(
self,
root,
@ -99,6 +100,7 @@ class ParserTfds(Parser):
download: download and build TFDS dataset if set, otherwise must use tfds CLI
repeats: iterate through (repeat) the dataset this many times per iteration (once if 0 or 1)
seed: common seed for shard shuffle across all distributed/worker instances
input_name: name of Feature to return as data (input)
input_image: image mode if input is an image (currently PIL mode string)
target_name: name of Feature to return as target (label)
target_image: image mode if target is an image (currently PIL mode string)
@ -111,7 +113,7 @@ class ParserTfds(Parser):
self.split = split
self.is_training = is_training
if self.is_training:
assert batch_size is not None,\
assert batch_size is not None, \
"Must specify batch_size in training mode for reasonable behaviour w/ TFDS wrapper"
self.batch_size = batch_size
self.repeats = repeats
@ -184,7 +186,7 @@ class ParserTfds(Parser):
InputContext will assign subset of underlying TFRecord files to each 'pipeline' if used.
My understanding is that using split, the underling TFRecord files will shuffle (shuffle_files=True)
between the splits each iteration, but that understanding could be wrong.
I am currently using a mix of InputContext shard assignment and fine-grained sub-splits for distributing
the data across workers. For training InputContext is used to assign shards to nodes unless num_shards
in dataset < total number of workers. Otherwise sub-split API is used for datasets without enough shards or

@ -86,9 +86,11 @@ class Attention(nn.Module):
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False)
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
if window_size:
@ -127,13 +129,7 @@ class Attention(nn.Module):
def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
if torch.jit.is_scripting():
# FIXME requires_grad breaks w/ torchscript
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias), self.v_bias))
else:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)

@ -36,6 +36,9 @@ default_cfgs = {
'botnet26t_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
'sebotnet33ts_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94),
'botnet50ts_256': _cfg(
url='',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
@ -51,7 +54,7 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'halonet50ts': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h_256-c6d7ff15.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h2_256-f3a3daee.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'eca_halonext26ts': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth',
@ -97,6 +100,22 @@ model_cfgs = dict(
self_attn_layer='bottleneck',
self_attn_kwargs=dict()
),
sebotnet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
act_layer='silu',
num_features=1280,
attn_layer='se',
self_attn_layer='bottleneck',
self_attn_kwargs=dict()
),
botnet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
@ -322,6 +341,13 @@ def botnet26t_256(pretrained=False, **kwargs):
return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs)
@register_model
def sebotnet33ts_256(pretrained=False, **kwargs):
""" Bottleneck Transformer w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU,
"""
return _create_byoanet('sebotnet33ts_256', 'sebotnet33ts', pretrained=pretrained, **kwargs)
@register_model
def botnet50ts_256(pretrained=False, **kwargs):
""" Bottleneck Transformer w/ ResNet50-T backbone, silu act.

@ -35,7 +35,7 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, named_apply
from .layers import ClassifierHead, ConvBnAct, BatchNormAct2d, DropPath, AvgPool2dSame, \
create_conv2d, get_act_layer, convert_norm_act, get_attn, make_divisible, to_2tuple
create_conv2d, get_act_layer, convert_norm_act, get_attn, make_divisible, to_2tuple, EvoNormSample2d
from .registry import register_model
__all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block']
@ -136,20 +136,26 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth'),
# experimental models, likely to change ot be removed
'regnetz_b': _cfgr(
'regnetz_b16': _cfgr(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_b_raa-677d9606.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 224, 224), pool_size=(7, 7), test_input_size=(3, 288, 288), first_conv='stem.conv', crop_pct=0.94),
'regnetz_c': _cfgr(
'regnetz_c16': _cfgr(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_c_rab2_256-a54bf36a.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), first_conv='stem.conv', crop_pct=0.94),
'regnetz_d': _cfgr(
'regnetz_d32': _cfgr(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d_rab_256-b8073a89.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=0.95),
'regnetz_d8': _cfgr(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d8_bh-afc03c55.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=1.0),
'regnetz_e8': _cfgr(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_e8_bh-aace8e6e.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=1.0),
'regnetz_d8_evob': _cfgr(
url='',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=0.95),
'regnetz_e8': _cfgr(
'regnetz_d8_evos': _cfgr(
url='',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=0.95),
}
@ -506,7 +512,7 @@ model_cfgs = dict(
),
# experimental models, closer to a RegNetZ than a ResNet. Similar to EfficientNets but w/ groups instead of DW
regnetz_b=ByoModelCfg(
regnetz_b16=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3),
@ -522,7 +528,7 @@ model_cfgs = dict(
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_c=ByoModelCfg(
regnetz_c16=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4),
@ -538,7 +544,7 @@ model_cfgs = dict(
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_d=ByoModelCfg(
regnetz_d32=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=32, br=4),
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=32, br=4),
@ -589,8 +595,45 @@ model_cfgs = dict(
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
)
# experimental EvoNorm configs
regnetz_d8_evob=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4),
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
downsample='',
num_features=1792,
act_layer='silu',
norm_layer='evonormbatch',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_d8_evos=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4),
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4),
),
stem_chs=64,
stem_type='deep',
stem_pool='',
downsample='',
num_features=1792,
act_layer='silu',
norm_layer=partial(EvoNormSample2d, groups=32),
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
)
@register_model
def gernet_l(pretrained=False, **kwargs):
@ -779,24 +822,24 @@ def gcresnext50ts(pretrained=False, **kwargs):
@register_model
def regnetz_b(pretrained=False, **kwargs):
def regnetz_b16(pretrained=False, **kwargs):
"""
"""
return _create_byobnet('regnetz_b', pretrained=pretrained, **kwargs)
return _create_byobnet('regnetz_b16', pretrained=pretrained, **kwargs)
@register_model
def regnetz_c(pretrained=False, **kwargs):
def regnetz_c16(pretrained=False, **kwargs):
"""
"""
return _create_byobnet('regnetz_c', pretrained=pretrained, **kwargs)
return _create_byobnet('regnetz_c16', pretrained=pretrained, **kwargs)
@register_model
def regnetz_d(pretrained=False, **kwargs):
def regnetz_d32(pretrained=False, **kwargs):
"""
"""
return _create_byobnet('regnetz_d', pretrained=pretrained, **kwargs)
return _create_byobnet('regnetz_d32', pretrained=pretrained, **kwargs)
@register_model
@ -813,6 +856,20 @@ def regnetz_e8(pretrained=False, **kwargs):
return _create_byobnet('regnetz_e8', pretrained=pretrained, **kwargs)
@register_model
def regnetz_d8_evob(pretrained=False, **kwargs):
"""
"""
return _create_byobnet('regnetz_d8_evob', pretrained=pretrained, **kwargs)
@register_model
def regnetz_d8_evos(pretrained=False, **kwargs):
"""
"""
return _create_byobnet('regnetz_d8_evos', pretrained=pretrained, **kwargs)
def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]:
if not isinstance(stage_blocks_cfg, Sequence):
stage_blocks_cfg = (stage_blocks_cfg,)

@ -19,6 +19,7 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, overlay_external_default_cfg
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .layers import _assert
__all__ = [
@ -105,7 +106,7 @@ class ConvRelPosEnc(nn.Module):
def forward(self, q, v, size: Tuple[int, int]):
B, h, N, Ch = q.shape
H, W = size
assert N == 1 + H * W
_assert(N == 1 + H * W, '')
# Convolutional relative position encoding.
q_img = q[:, :, 1:, :] # [B, h, H*W, Ch]
@ -177,7 +178,7 @@ class ConvPosEnc(nn.Module):
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
H, W = size
assert N == 1 + H * W
_assert(N == 1 + H * W, '')
# Extract CLS token and image tokens.
cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C]
@ -275,7 +276,7 @@ class ParallelBlock(nn.Module):
""" Feature map interpolation. """
B, N, C = x.shape
H, W = size
assert N == 1 + H * W
_assert(N == 1 + H * W, '')
cls_token = x[:, :1, :]
img_tokens = x[:, 1:, :]

@ -30,6 +30,7 @@ from .helpers import build_model_with_cfg
from .layers import DropPath, to_2tuple, trunc_normal_, PatchEmbed, Mlp
from .registry import register_model
from .vision_transformer_hybrid import HybridEmbed
from .fx_features import register_notrace_module
import torch
import torch.nn as nn
@ -56,6 +57,7 @@ default_cfgs = {
}
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
class GPSA(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.,
locality_strength=1.):

@ -22,6 +22,7 @@ NOTE: model names have been renamed from originals to represent actual input res
Modifed from Timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from typing import Tuple
import torch
import torch.nn as nn
@ -31,8 +32,9 @@ from functools import partial
from typing import List
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg
from .layers import DropPath, to_2tuple, trunc_normal_
from .layers import DropPath, to_2tuple, trunc_normal_, _assert
from .registry import register_model
from .vision_transformer import Mlp, Block
@ -116,8 +118,10 @@ class PatchEmbed(nn.Module):
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
_assert(H == self.img_size[0],
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
_assert(W == self.img_size[1],
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
x = self.proj(x).flatten(2).transpose(1, 2)
return x
@ -255,6 +259,27 @@ def _compute_num_patches(img_size, patches):
return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)]
@register_notrace_function
def scale_image(x, ss: Tuple[int, int], crop_scale: bool = False): # annotations for torchscript
"""
Pulled out of CrossViT.forward_features to bury conditional logic in a leaf node for FX tracing.
Args:
x (Tensor): input image
ss (tuple[int, int]): height and width to scale to
crop_scale (bool): whether to crop instead of interpolate to achieve the desired scale. Defaults to False
Returns:
Tensor: the "scaled" image batch tensor
"""
H, W = x.shape[-2:]
if H != ss[0] or W != ss[1]:
if crop_scale and ss[0] <= H and ss[1] <= W:
cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.))
x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]]
else:
x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False)
return x
class CrossViT(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
@ -342,17 +367,12 @@ class CrossViT(nn.Module):
range(self.num_branches)])
def forward_features(self, x):
B, C, H, W = x.shape
B = x.shape[0]
xs = []
for i, patch_embed in enumerate(self.patch_embed):
x_ = x
ss = self.img_size_scaled[i]
if H != ss[0] or W != ss[1]:
if self.crop_scale and ss[0] <= H and ss[1] <= W:
cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.))
x_ = x_[:, :, cu:cu + ss[0], cl:cl + ss[1]]
else:
x_ = torch.nn.functional.interpolate(x_, size=ss, mode='bicubic', align_corners=False)
x_ = scale_image(x_, ss, self.crop_scale)
x_ = patch_embed(x_)
cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script
cls_tokens = cls_tokens.expand(B, -1, -1)

@ -0,0 +1,73 @@
""" PyTorch FX Based Feature Extraction Helpers
Using https://pytorch.org/vision/stable/feature_extraction.html
"""
from typing import Callable
from torch import nn
from .features import _get_feature_info
try:
from torchvision.models.feature_extraction import create_feature_extractor
has_fx_feature_extraction = True
except ImportError:
has_fx_feature_extraction = False
# Layers we went to treat as leaf modules
from .layers import Conv2dSame, ScaledStdConv2dSame, BatchNormAct2d, BlurPool2d, CondConv2d, StdConv2dSame, DropPath
from .layers.non_local_attn import BilinearAttnTransform
from .layers.pool2d_same import MaxPool2dSame, AvgPool2dSame
# NOTE: By default, any modules from timm.models.layers that we want to treat as leaf modules go here
# BUT modules from timm.models should use the registration mechanism below
_leaf_modules = {
BatchNormAct2d, # reason: flow control for jit scripting
BilinearAttnTransform, # reason: flow control t <= 1
BlurPool2d, # reason: TypeError: F.conv2d received Proxy in groups=x.shape[1]
# Reason: get_same_padding has a max which raises a control flow error
Conv2dSame, MaxPool2dSame, ScaledStdConv2dSame, StdConv2dSame, AvgPool2dSame,
CondConv2d, # reason: TypeError: F.conv2d received Proxy in groups=self.groups * B (because B = x.shape[0])
DropPath, # reason: TypeError: rand recieved Proxy in `size` argument
}
try:
from .layers import InplaceAbn
_leaf_modules.add(InplaceAbn)
except ImportError:
pass
def register_notrace_module(module: nn.Module):
"""
Any module not under timm.models.layers should get this decorator if we don't want to trace through it.
"""
_leaf_modules.add(module)
return module
# Functions we want to autowrap (treat them as leaves)
_autowrap_functions = set()
def register_notrace_function(func: Callable):
"""
Decorator for functions which ought not to be traced through
"""
_autowrap_functions.add(func)
return func
class FeatureGraphNet(nn.Module):
def __init__(self, model, out_indices, out_map=None):
super().__init__()
assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction'
self.feature_info = _get_feature_info(model, out_indices)
if out_map is not None:
assert len(out_map) == len(out_indices)
return_nodes = {info['module']: out_map[i] if out_map is not None else info['module']
for i, info in enumerate(self.feature_info) if i in out_indices}
self.graph_module = create_feature_extractor(
model, return_nodes,
tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)})
def forward(self, x):
return list(self.graph_module(x).values())

@ -14,6 +14,7 @@ import torch.nn as nn
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet
from .fx_features import FeatureGraphNet
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf, load_state_dict_from_url
from .layers import Conv2dSame, Linear
@ -477,6 +478,8 @@ def build_model_with_cfg(
feature_cls = feature_cls.lower()
if 'hook' in feature_cls:
feature_cls = FeatureHookNet
elif feature_cls == 'fx':
feature_cls = FeatureGraphNet
else:
assert False, f'Unknown feature class {feature_cls}'
model = feature_cls(model, **feature_cfg)

@ -22,6 +22,7 @@ import torch.nn.functional as F
from .helpers import to_2tuple, make_divisible
from .weight_init import trunc_normal_
from .trace_utils import _assert
def rel_logits_1d(q, rel_k, permute_mask: List[int]):
@ -133,8 +134,8 @@ class BottleneckAttn(nn.Module):
def forward(self, x):
B, C, H, W = x.shape
assert H == self.pos_embed.height
assert W == self.pos_embed.width
_assert(H == self.pos_embed.height, '')
_assert(W == self.pos_embed.width, '')
x = self.qkv(x) # B, (2 * dim_head_qk + dim_head_v) * num_heads, H, W
@ -154,5 +155,3 @@ class BottleneckAttn(nn.Module):
out = (attn @ v).transpose(-1, -2).reshape(B, self.dim_out_v, H, W) # B, dim_out, H, W
out = self.pool(out)
return out

@ -12,6 +12,8 @@ Hacked together by / Copyright 2020 Ross Wightman
import torch
import torch.nn as nn
from .trace_utils import _assert
class EvoNormBatch2d(nn.Module):
def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, drop_block=None):
@ -19,12 +21,10 @@ class EvoNormBatch2d(nn.Module):
self.apply_act = apply_act # apply activation (non-linearity)
self.momentum = momentum
self.eps = eps
param_shape = (1, num_features, 1, 1)
self.weight = nn.Parameter(torch.ones(param_shape), requires_grad=True)
self.bias = nn.Parameter(torch.zeros(param_shape), requires_grad=True)
if apply_act:
self.v = nn.Parameter(torch.ones(param_shape), requires_grad=True)
self.register_buffer('running_var', torch.ones(1, num_features, 1, 1))
self.weight = nn.Parameter(torch.ones(num_features), requires_grad=True)
self.bias = nn.Parameter(torch.zeros(num_features), requires_grad=True)
self.v = nn.Parameter(torch.ones(num_features), requires_grad=True) if apply_act else None
self.register_buffer('running_var', torch.ones(num_features))
self.reset_parameters()
def reset_parameters(self):
@ -36,33 +36,32 @@ class EvoNormBatch2d(nn.Module):
def forward(self, x):
assert x.dim() == 4, 'expected 4D input'
x_type = x.dtype
running_var = self.running_var.view(1, -1, 1, 1)
if self.training:
var = x.var(dim=(0, 2, 3), unbiased=False, keepdim=True)
n = x.numel() / x.shape[1]
self.running_var.copy_(
var.detach() * self.momentum * (n / (n - 1)) + self.running_var * (1 - self.momentum))
running_var = var.detach() * self.momentum * (n / (n - 1)) + running_var * (1 - self.momentum)
self.running_var.copy_(running_var.view(self.running_var.shape))
else:
var = self.running_var
var = running_var
if self.apply_act:
v = self.v.to(dtype=x_type)
if self.v is not None:
v = self.v.to(dtype=x_type).reshape(1, -1, 1, 1)
d = x * v + (x.var(dim=(2, 3), unbiased=False, keepdim=True) + self.eps).sqrt().to(dtype=x_type)
d = d.max((var + self.eps).sqrt().to(dtype=x_type))
x = x / d
return x * self.weight + self.bias
return x * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1)
class EvoNormSample2d(nn.Module):
def __init__(self, num_features, apply_act=True, groups=8, eps=1e-5, drop_block=None):
def __init__(self, num_features, apply_act=True, groups=32, eps=1e-5, drop_block=None):
super(EvoNormSample2d, self).__init__()
self.apply_act = apply_act # apply activation (non-linearity)
self.groups = groups
self.eps = eps
param_shape = (1, num_features, 1, 1)
self.weight = nn.Parameter(torch.ones(param_shape), requires_grad=True)
self.bias = nn.Parameter(torch.zeros(param_shape), requires_grad=True)
if apply_act:
self.v = nn.Parameter(torch.ones(param_shape), requires_grad=True)
self.weight = nn.Parameter(torch.ones(num_features), requires_grad=True)
self.bias = nn.Parameter(torch.zeros(num_features), requires_grad=True)
self.v = nn.Parameter(torch.ones(num_features), requires_grad=True) if apply_act else None
self.reset_parameters()
def reset_parameters(self):
@ -72,12 +71,12 @@ class EvoNormSample2d(nn.Module):
nn.init.ones_(self.v)
def forward(self, x):
assert x.dim() == 4, 'expected 4D input'
_assert(x.dim() == 4, 'expected 4D input')
B, C, H, W = x.shape
assert C % self.groups == 0
if self.apply_act:
n = x * (x * self.v).sigmoid()
_assert(C % self.groups == 0, '')
if self.v is not None:
n = x * (x * self.v.view(1, -1, 1, 1)).sigmoid()
x = x.reshape(B, self.groups, -1)
x = n.reshape(B, self.groups, -1) / (x.var(dim=-1, unbiased=False, keepdim=True) + self.eps).sqrt()
x = x.reshape(B, C, H, W)
return x * self.weight + self.bias
return x * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1)

@ -16,7 +16,7 @@ The attention mechanism works but it's slow as implemented.
Hacked together by / Copyright 2021 Ross Wightman
"""
from typing import Tuple, List
from typing import List
import torch
from torch import nn
@ -24,6 +24,7 @@ import torch.nn.functional as F
from .helpers import make_divisible
from .weight_init import trunc_normal_
from .trace_utils import _assert
def rel_logits_1d(q, rel_k, permute_mask: List[int]):
@ -167,8 +168,8 @@ class HaloAttn(nn.Module):
def forward(self, x):
B, C, H, W = x.shape
assert H % self.block_size == 0
assert W % self.block_size == 0
_assert(H % self.block_size == 0, '')
_assert(W % self.block_size == 0, '')
num_h_blocks = H // self.block_size
num_w_blocks = W // self.block_size
num_blocks = num_h_blocks * num_w_blocks

@ -10,6 +10,7 @@ from torch.nn import functional as F
from .conv_bn_act import ConvBnAct
from .helpers import make_divisible
from .trace_utils import _assert
class NonLocalAttn(nn.Module):
@ -83,7 +84,7 @@ class BilinearAttnTransform(nn.Module):
def resize_mat(self, x, t: int):
B, C, block_size, block_size1 = x.shape
assert block_size == block_size1
_assert(block_size == block_size1, '')
if t <= 1:
return x
x = x.view(B * C, -1, 1, 1)
@ -95,7 +96,8 @@ class BilinearAttnTransform(nn.Module):
return x
def forward(self, x):
assert x.shape[-1] % self.block_size == 0 and x.shape[-2] % self.block_size == 0
_assert(x.shape[-1] % self.block_size == 0, '')
_assert(x.shape[-2] % self.block_size == 0, '')
B, C, H, W = x.shape
out = self.conv1(x)
rp = F.adaptive_max_pool2d(out, (self.block_size, 1))

@ -6,7 +6,7 @@ import torch.nn.functional as F
class GroupNorm(nn.GroupNorm):
def __init__(self, num_channels, num_groups, eps=1e-5, affine=True):
def __init__(self, num_channels, num_groups=32, eps=1e-5, affine=True):
# NOTE num_channels is swapped to first arg for consistency in swapping norm layers with BN
super().__init__(num_groups, num_channels, eps=eps, affine=affine)

@ -68,7 +68,7 @@ class BatchNormAct2d(nn.BatchNorm2d):
class GroupNormAct(nn.GroupNorm):
# NOTE num_channel and num_groups order flipped for easier layer swaps / binding of fixed args
def __init__(self, num_channels, num_groups, eps=1e-5, affine=True,
def __init__(self, num_channels, num_groups=32, eps=1e-5, affine=True,
apply_act=True, act_layer=nn.ReLU, inplace=True, drop_block=None):
super(GroupNormAct, self).__init__(num_groups, num_channels, eps=eps, affine=affine)
if isinstance(act_layer, str):

@ -9,6 +9,7 @@ from torch import nn as nn
from .conv_bn_act import ConvBnAct
from .helpers import make_divisible
from .trace_utils import _assert
def _kernel_valid(k):
@ -34,7 +35,7 @@ class SelectiveKernelAttn(nn.Module):
self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False)
def forward(self, x):
assert x.shape[1] == self.num_paths
_assert(x.shape[1] == self.num_paths, '')
x = x.sum(1).mean((2, 3), keepdim=True)
x = self.fc_reduce(x)
x = self.bn(x)

@ -25,8 +25,10 @@ import torch.nn.functional as F
from torch import nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg, named_apply
from .layers import PatchEmbed, Mlp, DropPath, create_classifier, trunc_normal_
from .layers import _assert
from .layers import create_conv2d, create_pool2d, to_ntuple
from .registry import register_model
@ -128,8 +130,8 @@ class ConvPool(nn.Module):
"""
x is expected to have shape (B, C, H, W)
"""
assert x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims'
assert x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims'
_assert(x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims')
_assert(x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims')
x = self.conv(x)
# Layer norm done over channel dim only
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
@ -144,8 +146,8 @@ def blockify(x, block_size: int):
block_size (int): edge length of a single square block in units of H, W
"""
B, H, W, C = x.shape
assert H % block_size == 0, '`block_size` must divide input height evenly'
assert W % block_size == 0, '`block_size` must divide input width evenly'
_assert(H % block_size == 0, '`block_size` must divide input height evenly')
_assert(W % block_size == 0, '`block_size` must divide input width evenly')
grid_height = H // block_size
grid_width = W // block_size
x = x.reshape(B, grid_height, block_size, grid_width, block_size, C)
@ -153,6 +155,7 @@ def blockify(x, block_size: int):
return x # (B, T, N, C)
@register_notrace_function # reason: int receives Proxy
def deblockify(x, block_size: int):
"""blocks to image
Args:

@ -26,6 +26,7 @@ import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_module
from .helpers import build_model_with_cfg
from .registry import register_model
from .layers import ClassifierHead, DropPath, AvgPool2dSame, ScaledStdConv2d, ScaledStdConv2dSame,\
@ -318,6 +319,7 @@ class DownsampleAvg(nn.Module):
return self.conv(self.pool(x))
@register_notrace_module # reason: mul_ causes FX to drop a relevant node. https://github.com/pytorch/pytorch/issues/68301
class NormFreeBlock(nn.Module):
"""Normalization-Free pre-activation block.
"""

@ -15,7 +15,7 @@ import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, create_attn, get_attn, create_classifier
from .layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, GroupNorm, create_attn, get_attn, create_classifier
from .registry import register_model
__all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] # model_registry will add each entrypoint fn to this
@ -89,10 +89,15 @@ default_cfgs = {
interpolation='bicubic'),
'wide_resnet101_2': _cfg(url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'),
# ResNets w/ alternative norm layers
'resnet50_gn': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth',
crop_pct=0.94, interpolation='bicubic'),
# ResNeXt
'resnext50_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth',
interpolation='bicubic'),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1h-0146ab0a.pth',
interpolation='bicubic', crop_pct=0.95),
'resnext50d_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth',
interpolation='bicubic',
@ -881,6 +886,14 @@ def wide_resnet101_2(pretrained=False, **kwargs):
return _create_resnet('wide_resnet101_2', pretrained, **model_args)
@register_model
def resnet50_gn(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model w/ GroupNorm
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('resnet50_gn', pretrained, norm_layer=GroupNorm, **model_args)
@register_model
def resnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50-32x4d model.

@ -120,6 +120,13 @@ default_cfgs = {
interpolation='bicubic'),
'resnetv2_152d': _cfg(
interpolation='bicubic', first_conv='stem.conv1'),
'resnetv2_50d_gn': _cfg(
interpolation='bicubic', first_conv='stem.conv1'),
'resnetv2_50d_evob': _cfg(
interpolation='bicubic', first_conv='stem.conv1'),
'resnetv2_50d_evos': _cfg(
interpolation='bicubic', first_conv='stem.conv1'),
}
@ -639,19 +646,27 @@ def resnetv2_152d(pretrained=False, **kwargs):
stem_type='deep', avg_down=True, **kwargs)
# @register_model
# def resnetv2_50ebd(pretrained=False, **kwargs):
# # FIXME for testing w/ TPU + PyTorch XLA
# return _create_resnetv2(
# 'resnetv2_50d', pretrained=pretrained,
# layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNormBatch2d,
# stem_type='deep', avg_down=True, **kwargs)
#
#
# @register_model
# def resnetv2_50esd(pretrained=False, **kwargs):
# # FIXME for testing w/ TPU + PyTorch XLA
# return _create_resnetv2(
# 'resnetv2_50d', pretrained=pretrained,
# layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNormSample2d,
# stem_type='deep', avg_down=True, **kwargs)
# Experimental configs (may change / be removed)
@register_model
def resnetv2_50d_gn(pretrained=False, **kwargs):
return _create_resnetv2(
'resnetv2_50d_gn', pretrained=pretrained,
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=GroupNormAct,
stem_type='deep', avg_down=True, **kwargs)
@register_model
def resnetv2_50d_evob(pretrained=False, **kwargs):
return _create_resnetv2(
'resnetv2_50d_evob', pretrained=pretrained,
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNormBatch2d,
stem_type='deep', avg_down=True, **kwargs)
@register_model
def resnetv2_50d_evos(pretrained=False, **kwargs):
return _create_resnetv2(
'resnetv2_50d_evos', pretrained=pretrained,
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNormSample2d,
stem_type='deep', avg_down=True, **kwargs)

@ -10,6 +10,7 @@ Changes for timm, feature extraction, and rounded channel variant hacked togethe
Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
from functools import partial
from math import ceil
@ -92,7 +93,7 @@ class LinearBottleneck(nn.Module):
if self.use_shortcut:
if self.drop_path is not None:
x = self.drop_path(x)
x[:, 0:self.in_channels] += shortcut
x = torch.cat([x[:, 0:self.in_channels] + shortcut, x[:, self.in_channels:]], dim=1)
return x

@ -21,11 +21,14 @@ import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg, overlay_external_default_cfg
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_
from .layers import _assert
from .registry import register_model
from .vision_transformer import checkpoint_filter_fn, _init_vit_weights
_logger = logging.getLogger(__name__)
@ -100,6 +103,7 @@ def window_partition(x, window_size: int):
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows, window_size: int, H: int, W: int):
"""
Args:
@ -270,7 +274,7 @@ class SwinTransformerBlock(nn.Module):
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
_assert(L == H * W, "input feature has wrong size")
shortcut = x
x = self.norm1(x)
@ -329,8 +333,8 @@ class PatchMerging(nn.Module):
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
_assert(L == H * W, "input feature has wrong size")
_assert(H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even.")
x = x.view(B, H, W, C)

@ -9,12 +9,12 @@ https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT
import math
import torch
import torch.nn as nn
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import build_model_with_cfg
from timm.models.layers import Mlp, DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
from timm.models.layers import _assert
from timm.models.registry import register_model
from timm.models.vision_transformer import resize_pos_embed
@ -109,7 +109,9 @@ class Block(nn.Module):
pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))
# outer
B, N, C = patch_embed.size()
patch_embed[:, 1:] = patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))
patch_embed = torch.cat(
[patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))],
dim=1)
patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
return pixel_embed, patch_embed
@ -136,8 +138,10 @@ class PixelEmbed(nn.Module):
def forward(self, x, pixel_pos):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
_assert(H == self.img_size[0],
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
_assert(W == self.img_size[1],
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
x = self.proj(x)
x = self.unfold(x)
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])

@ -22,9 +22,10 @@ from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .layers import Mlp, DropPath, to_2tuple, trunc_normal_
from .fx_features import register_notrace_module
from .registry import register_model
from .vision_transformer import Attention
from .helpers import build_model_with_cfg, overlay_external_default_cfg
from .helpers import build_model_with_cfg
def _cfg(url='', **kwargs):
@ -62,6 +63,7 @@ default_cfgs = {
Size_ = Tuple[int, int]
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
class LocallyGroupedAttn(nn.Module):
""" LSA: self attention within a group
"""

@ -12,7 +12,8 @@ from typing import Union, List, Dict, Any, cast
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, ConvBnAct
from .fx_features import register_notrace_module
from .layers import ClassifierHead
from .registry import register_model
__all__ = [
@ -52,6 +53,7 @@ cfgs: Dict[str, List[Union[str, int]]] = {
}
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
class ConvMlp(nn.Module):
def __init__(self, in_features=512, out_features=4096, kernel_size=7, mlp_ratio=1.0,

@ -88,6 +88,9 @@ default_cfgs = {
url='https://storage.googleapis.com/vit_models/augreg/'
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch8_224': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/'
'B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
'vit_large_patch32_224': _cfg(
url='', # no official model weights for this combo, only for in21k
),
@ -118,6 +121,9 @@ default_cfgs = {
'vit_base_patch16_224_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
num_classes=21843),
'vit_base_patch8_224_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
num_classes=21843),
'vit_large_patch32_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
num_classes=21843),
@ -640,6 +646,16 @@ def vit_base_patch16_384(pretrained=False, **kwargs):
return model
@register_model
def vit_base_patch8_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_large_patch32_224(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
@ -756,6 +772,18 @@ def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
return model
@register_model
def vit_base_patch8_224_in21k(pretrained=False, **kwargs):
""" ViT-Base model (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
"""
model_kwargs = dict(
patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer('vit_base_patch8_224_in21k', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).

@ -21,6 +21,7 @@ from .vision_transformer import _cfg, Mlp
from .registry import register_model
from .layers import DropPath, trunc_normal_, to_2tuple
from .cait import ClassAttn
from .fx_features import register_notrace_module
def _cfg(url='', **kwargs):
@ -97,6 +98,7 @@ default_cfgs = {
}
@register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method
class PositionalEncodingFourier(nn.Module):
"""
Positional encoding relying on a fourier kernel matching the one used in the "Attention is all of Need" paper.

Loading…
Cancel
Save