diff --git a/timm/models/vision_transformer.py b/timm/models/vision_transformer.py index cc7e0903..1acdd808 100644 --- a/timm/models/vision_transformer.py +++ b/timm/models/vision_transformer.py @@ -352,7 +352,7 @@ def _init_vit_weights(m, n: str = '', head_bias: float = 0., jax_impl: bool = Fa nn.init.ones_(m.weight) -def resize_pos_embed(posemb, posemb_new, num_tokens=1): +def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=[]): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) @@ -363,11 +363,12 @@ def resize_pos_embed(posemb, posemb_new, num_tokens=1): else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) - gs_new = int(math.sqrt(ntok_new)) - _logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new) + if not len(gs_new): # backwards compatibility + gs_new = [int(math.sqrt(ntok_new))]*2 + _logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) - posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear') - posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1) + posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bilinear') + posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb @@ -385,7 +386,8 @@ def checkpoint_filter_fn(state_dict, model): v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape != model.pos_embed.shape: # To resize pos embedding when using model at different size from pretrained weights - v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1)) + v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1), + model.patch_embed.grid_size) out_dict[k] = v return out_dict