From 7c67d6aca992f039eece0af5f7c29a43d48c00e4 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Wed, 2 Feb 2022 09:15:20 -0800 Subject: [PATCH] Update README.md --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index 3fa9701f..69effde4 100644 --- a/README.md +++ b/README.md @@ -23,6 +23,12 @@ I'm fortunate to be able to dedicate significant time and money of my own suppor ## What's New +### Feb 2, 2022 +* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) +* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. + * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! + * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. + ### Jan 14, 2022 * Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... * Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features @@ -410,6 +416,8 @@ Model validation results can be found in the [documentation](https://rwightman.g My current [documentation](https://rwightman.github.io/pytorch-image-models/) for `timm` covers the basics. +[Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail. + [timmdocs](https://fastai.github.io/timmdocs/) is quickly becoming a much more comprehensive set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs. [paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`.