Add EfficientNet impl, change existing depth_multipler -> channel_multiplier as definitions have been confused

pull/6/head
Ross Wightman 6 years ago
parent 6bff9c75dc
commit 7a6d61566e

@ -30,6 +30,7 @@ I've included a few of my favourite models, but this is not an exhaustive collec
* DPN (from [me](https://github.com/rwightman/pytorch-dpn-pretrained), weights hosted by Cadene)
* DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107
* Generic MobileNet (from my standalone [GenMobileNet](https://github.com/rwightman/genmobilenet-pytorch)) - A generic model that implements many of the mobile optimized architecture search derived models that utilize similar DepthwiseSeparable and InvertedResidual blocks
* EfficientNet (B0-B4) (https://arxiv.org/abs/1905.11946) -- work in progress, validating
* MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
* MobileNet-V1 (https://arxiv.org/abs/1704.04861)
* MobileNet-V2 (https://arxiv.org/abs/1801.04381)

@ -1,6 +1,7 @@
""" Generic MobileNet
A generic MobileNet class with building blocks to support a variety of models:
* EfficientNet (B0-B4 in code right now, work in progress, still verifying)
* MNasNet B1, A1 (SE), Small
* MobileNet V1, V2, and V3 (work in progress)
* FBNet-C (TODO A & B)
@ -30,7 +31,8 @@ _models = [
'mnasnet_050', 'mnasnet_075', 'mnasnet_100', 'mnasnet_140', 'semnasnet_050', 'semnasnet_075',
'semnasnet_100', 'semnasnet_140', 'mnasnet_small', 'mobilenetv1_100', 'mobilenetv2_100',
'mobilenetv3_050', 'mobilenetv3_075', 'mobilenetv3_100', 'chamnetv1_100', 'chamnetv2_100',
'fbnetc_100', 'spnasnet_100', 'tflite_mnasnet_100', 'tflite_semnasnet_100']
'fbnetc_100', 'spnasnet_100', 'tflite_mnasnet_100', 'tflite_semnasnet_100', 'efficientnet_b0',
'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4']
__all__ = ['GenMobileNet', 'genmobilenet_model_names'] + _models
@ -67,6 +69,11 @@ default_cfgs = {
'chamnetv2_100': _cfg(url=''),
'fbnetc_100': _cfg(url='https://www.dropbox.com/s/0ku2tztuibrynld/fbnetc_100-f49a0c5f.pth?dl=1'),
'spnasnet_100': _cfg(url='https://www.dropbox.com/s/iieopt18rytkgaa/spnasnet_100-048bc3f4.pth?dl=1'),
'efficientnet_b0': _cfg(url=''),
'efficientnet_b1': _cfg(url='', input_size=(3, 240, 240)),
'efficientnet_b2': _cfg(url='', input_size=(3, 260, 260)),
'efficientnet_b3': _cfg(url='', input_size=(3, 300, 300)),
'efficientnet_b4': _cfg(url='', input_size=(3, 380, 380)),
}
_DEBUG = False
@ -101,23 +108,23 @@ def _resolve_bn_params(kwargs):
return bn_momentum, bn_eps
def _round_channels(channels, depth_multiplier=1.0, depth_divisor=8, min_depth=None):
def _round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
"""Round number of filters based on depth multiplier."""
if not depth_multiplier:
if not multiplier:
return channels
channels *= depth_multiplier
min_depth = min_depth or depth_divisor
channels *= multiplier
channel_min = channel_min or divisor
new_channels = max(
int(channels + depth_divisor / 2) // depth_divisor * depth_divisor,
min_depth)
int(channels + divisor / 2) // divisor * divisor,
channel_min)
# Make sure that round down does not go down by more than 10%.
if new_channels < 0.9 * channels:
new_channels += depth_divisor
new_channels += divisor
return new_channels
def _decode_block_str(block_str):
def _decode_block_str(block_str, depth_multiplier=1.0):
""" Decode block definition string
Gets a list of block arg (dicts) through a string notation of arguments.
@ -207,6 +214,7 @@ def _decode_block_str(block_str):
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_fn=act_fn,
noskip=block_type == 'dsa' or noskip,
@ -223,7 +231,9 @@ def _decode_block_str(block_str):
else:
assert False, 'Unknown block type (%s)' % block_type
# return a list of block args expanded by num_repeat
# return a list of block args expanded by num_repeat and
# scaled by depth_multiplier
num_repeat = int(math.ceil(num_repeat * depth_multiplier))
return [deepcopy(block_args) for _ in range(num_repeat)]
@ -243,14 +253,14 @@ def _decode_arch_args(string_list):
return block_args
def _decode_arch_def(arch_def):
def _decode_arch_def(arch_def, depth_multiplier=1.0):
arch_args = []
for stack_idx, block_strings in enumerate(arch_def):
assert isinstance(block_strings, list)
stack_args = []
for block_str in block_strings:
assert isinstance(block_str, str)
stack_args.extend(_decode_block_str(block_str))
stack_args.extend(_decode_block_str(block_str, depth_multiplier))
arch_args.append(stack_args)
return arch_args
@ -265,13 +275,13 @@ class _BlockBuilder:
"""
def __init__(self, depth_multiplier=1.0, depth_divisor=8, min_depth=None,
def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None,
act_fn=None, se_gate_fn=torch.sigmoid, se_reduce_mid=False,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
folded_bn=False, padding_same=False, verbose=False):
self.depth_multiplier = depth_multiplier
self.depth_divisor = depth_divisor
self.min_depth = min_depth
self.channel_multiplier = channel_multiplier
self.channel_divisor = channel_divisor
self.channel_min = channel_min
self.act_fn = act_fn
self.se_gate_fn = se_gate_fn
self.se_reduce_mid = se_reduce_mid
@ -283,7 +293,7 @@ class _BlockBuilder:
self.in_chs = None
def _round_channels(self, chs):
return _round_channels(chs, self.depth_multiplier, self.depth_divisor, self.min_depth)
return _round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)
def _make_block(self, ba):
bt = ba.pop('block_type')
@ -327,7 +337,7 @@ class _BlockBuilder:
blocks.append(block)
return nn.Sequential(*blocks)
def __call__(self, in_chs, arch_def):
def __call__(self, in_chs, block_args):
""" Build the blocks
Args:
in_chs: Number of input-channels passed to first block
@ -336,13 +346,12 @@ class _BlockBuilder:
Return:
List of block stacks (each stack wrapped in nn.Sequential)
"""
arch_args = _decode_arch_def(arch_def) # convert and expand string defs to arg dicts
if self.verbose:
print('Building model trunk with %d stacks (stages)...' % len(arch_args))
print('Building model trunk with %d stacks (stages)...' % len(block_args))
self.in_chs = in_chs
blocks = []
# outer list of arch_args defines the stacks ('stages' by some conventions)
for stack_idx, stack in enumerate(arch_args):
# outer list of block_args defines the stacks ('stages' by some conventions)
for stack_idx, stack in enumerate(block_args):
if self.verbose:
print('stack', stack_idx)
assert isinstance(stack, list)
@ -381,6 +390,10 @@ def _initialize_weight_default(m):
nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear')
def swish(x):
return x * torch.sigmoid(x)
def hard_swish(x):
return x * F.relu6(x + 3.) / 6.
@ -389,6 +402,46 @@ def hard_sigmoid(x):
return F.relu6(x + 3.) / 6.
class ChannelShuffle(nn.Module):
# FIXME haven't used yet
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
N, C, H, W = x.size()
g = self.groups
assert C % g == 0, "Incompatible group size {} for input channel {}".format(
g, C
)
return (
x.view(N, g, int(C / g), H, W)
.permute(0, 2, 1, 3, 4)
.contiguous()
.view(N, C, H, W)
)
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, reduce_chs=None, act_fn=F.relu, gate_fn=torch.sigmoid):
super(SqueezeExcite, self).__init__()
self.act_fn = act_fn
self.gate_fn = gate_fn
reduced_chs = reduce_chs or in_chs
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, x):
# NOTE adaptiveavgpool can be used here, but seems to cause issues with NVIDIA AMP performance
x_se = x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
x_se = self.conv_reduce(x_se)
x_se = self.act_fn(x_se)
x_se = self.conv_expand(x_se)
x = self.gate_fn(x_se) * x
return x
class ConvBnAct(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, act_fn=F.relu,
@ -413,12 +466,18 @@ class ConvBnAct(nn.Module):
class DepthwiseSeparableConv(nn.Module):
""" DepthwiseSeparable block
Used for DS convs in MobileNet-V1 and in the place of IR blocks with an expansion
factor of 1.0. This is an alternative to having a IR with optional first pw conv.
"""
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, act_fn=F.relu, noskip=False, pw_act=False,
se_ratio=0., se_gate_fn=torch.sigmoid,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
folded_bn=False, padding_same=False):
super(DepthwiseSeparableConv, self).__init__()
assert stride in [1, 2]
self.has_se = se_ratio is not None and se_ratio > 0.
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
self.has_pw_act = pw_act # activation after point-wise conv
self.act_fn = act_fn
@ -429,6 +488,12 @@ class DepthwiseSeparableConv(nn.Module):
in_chs, in_chs, kernel_size,
stride=stride, padding=dw_padding, groups=in_chs, bias=folded_bn)
self.bn1 = None if folded_bn else nn.BatchNorm2d(in_chs, momentum=bn_momentum, eps=bn_eps)
# Squeeze-and-excitation
if self.has_se:
self.se = SqueezeExcite(
in_chs, reduce_chs=max(1, int(in_chs * se_ratio)), act_fn=act_fn, gate_fn=se_gate_fn)
self.conv_pw = sconv2d(in_chs, out_chs, 1, padding=pw_padding, bias=folded_bn)
self.bn2 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps)
@ -440,6 +505,9 @@ class DepthwiseSeparableConv(nn.Module):
x = self.bn1(x)
x = self.act_fn(x)
if self.has_se:
x = self.se(x)
x = self.conv_pw(x)
if self.bn2 is not None:
x = self.bn2(x)
@ -447,7 +515,7 @@ class DepthwiseSeparableConv(nn.Module):
x = self.act_fn(x)
if self.has_residual:
x += residual
x += residual # FIXME add drop-connect
return x
@ -481,46 +549,6 @@ class CascadeConv(nn.Sequential):
return x
class ChannelShuffle(nn.Module):
# FIXME haven't used yet
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
N, C, H, W = x.size()
g = self.groups
assert C % g == 0, "Incompatible group size {} for input channel {}".format(
g, C
)
return (
x.view(N, g, int(C / g), H, W)
.permute(0, 2, 1, 3, 4)
.contiguous()
.view(N, C, H, W)
)
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, reduce_chs=None, act_fn=F.relu, gate_fn=torch.sigmoid):
super(SqueezeExcite, self).__init__()
self.act_fn = act_fn
self.gate_fn = gate_fn
reduced_chs = reduce_chs or in_chs
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, x):
# NOTE adaptiveavgpool can be used here, but seems to cause issues with NVIDIA AMP performance
x_se = x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
x_se = self.conv_reduce(x_se)
x_se = self.act_fn(x_se)
x_se = self.conv_expand(x_se)
x = self.gate_fn(x_se) * x
return x
class InvertedResidual(nn.Module):
""" Inverted residual block w/ optional SE"""
@ -554,8 +582,8 @@ class InvertedResidual(nn.Module):
# Squeeze-and-excitation
if self.has_se:
se_base_chs = mid_chs if se_reduce_mid else in_chs
self.se = SqueezeExcite(mid_chs, reduce_chs=max(1, int(se_base_chs * se_ratio)),
act_fn=act_fn, gate_fn=se_gate_fn)
self.se = SqueezeExcite(
mid_chs, reduce_chs=max(1, int(se_base_chs * se_ratio)), act_fn=act_fn, gate_fn=se_gate_fn)
# Point-wise linear projection
self.conv_pwl = sconv2d(mid_chs, out_chs, 1, padding=pw_padding, groups=pw_group, bias=folded_bn)
@ -591,7 +619,7 @@ class InvertedResidual(nn.Module):
x = self.bn3(x)
if self.has_residual:
x += residual
x += residual # FIXME add drop-connect
# NOTE maskrcnn_benchmark building blocks have an SE module defined here for some variants
@ -609,22 +637,23 @@ class GenMobileNet(nn.Module):
* FBNet A, B, and C
* ChamNet (arch details are murky)
* Single-Path NAS Pixel1
* EfficientNet
"""
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=32, num_features=1280,
depth_multiplier=1.0, depth_divisor=8, min_depth=None,
channel_multiplier=1.0, channel_divisor=8, channel_min=None,
bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT,
drop_rate=0., act_fn=F.relu, se_gate_fn=torch.sigmoid, se_reduce_mid=False,
global_pool='avg', head_conv='default', weight_init='goog',
folded_bn=False, padding_same=False):
super(GenMobileNet, self).__init__()
self.num_classes = num_classes
self.depth_multiplier = depth_multiplier
self.depth_multiplier = channel_multiplier
self.drop_rate = drop_rate
self.act_fn = act_fn
self.num_features = num_features
stem_size = _round_channels(stem_size, depth_multiplier, depth_divisor, min_depth)
stem_size = _round_channels(stem_size, channel_multiplier, channel_divisor, channel_min)
self.conv_stem = sconv2d(
in_chans, stem_size, 3,
padding=_padding_arg(1, padding_same), stride=2, bias=folded_bn)
@ -632,7 +661,7 @@ class GenMobileNet(nn.Module):
in_chs = stem_size
builder = _BlockBuilder(
depth_multiplier, depth_divisor, min_depth,
channel_multiplier, channel_divisor, channel_min,
act_fn, se_gate_fn, se_reduce_mid,
bn_momentum, bn_eps, folded_bn, padding_same, verbose=_DEBUG)
self.blocks = nn.Sequential(*builder(in_chs, block_args))
@ -705,14 +734,14 @@ class GenMobileNet(nn.Module):
return self.classifier(x)
def _gen_mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
def _gen_mnasnet_a1(channel_multiplier, num_classes=1000, **kwargs):
"""Creates a mnasnet-a1 model.
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
Paper: https://arxiv.org/pdf/1807.11626.pdf.
Args:
depth_multiplier: multiplier to number of channels per layer.
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
@ -732,12 +761,12 @@ def _gen_mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -745,14 +774,14 @@ def _gen_mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
def _gen_mnasnet_b1(channel_multiplier, num_classes=1000, **kwargs):
"""Creates a mnasnet-b1 model.
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
Paper: https://arxiv.org/pdf/1807.11626.pdf.
Args:
depth_multiplier: multiplier to number of channels per layer.
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
@ -772,12 +801,12 @@ def _gen_mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -785,14 +814,14 @@ def _gen_mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_mnasnet_small(depth_multiplier, num_classes=1000, **kwargs):
def _gen_mnasnet_small(channel_multiplier, num_classes=1000, **kwargs):
"""Creates a mnasnet-b1 model.
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
Paper: https://arxiv.org/pdf/1807.11626.pdf.
Args:
depth_multiplier: multiplier to number of channels per layer.
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
['ds_r1_k3_s1_c8'],
@ -805,12 +834,12 @@ def _gen_mnasnet_small(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=8,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -818,7 +847,7 @@ def _gen_mnasnet_small(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_mobilenet_v1(depth_multiplier, num_classes=1000, **kwargs):
def _gen_mobilenet_v1(channel_multiplier, num_classes=1000, **kwargs):
""" Generate MobileNet-V1 network
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py
Paper: https://arxiv.org/abs/1801.04381
@ -832,13 +861,13 @@ def _gen_mobilenet_v1(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
num_features=1024,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
act_fn=F.relu6,
@ -848,7 +877,7 @@ def _gen_mobilenet_v1(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_mobilenet_v2(depth_multiplier, num_classes=1000, **kwargs):
def _gen_mobilenet_v2(channel_multiplier, num_classes=1000, **kwargs):
""" Generate MobileNet-V2 network
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py
Paper: https://arxiv.org/abs/1801.04381
@ -864,12 +893,12 @@ def _gen_mobilenet_v2(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
act_fn=F.relu6,
@ -878,14 +907,14 @@ def _gen_mobilenet_v2(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_mobilenet_v3(depth_multiplier, num_classes=1000, **kwargs):
def _gen_mobilenet_v3(channel_multiplier, num_classes=1000, **kwargs):
"""Creates a MobileNet-V3 model.
Ref impl: ?
Paper: https://arxiv.org/abs/1905.02244
Args:
depth_multiplier: multiplier to number of channels per layer.
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
@ -905,12 +934,12 @@ def _gen_mobilenet_v3(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=16,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
act_fn=hard_swish,
@ -922,7 +951,7 @@ def _gen_mobilenet_v3(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_chamnet_v1(depth_multiplier, num_classes=1000, **kwargs):
def _gen_chamnet_v1(channel_multiplier, num_classes=1000, **kwargs):
""" Generate Chameleon Network (ChamNet)
Paper: https://arxiv.org/abs/1812.08934
@ -941,13 +970,13 @@ def _gen_chamnet_v1(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
num_features=1280, # no idea what this is? try mobile/mnasnet default?
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -955,7 +984,7 @@ def _gen_chamnet_v1(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_chamnet_v2(depth_multiplier, num_classes=1000, **kwargs):
def _gen_chamnet_v2(channel_multiplier, num_classes=1000, **kwargs):
""" Generate Chameleon Network (ChamNet)
Paper: https://arxiv.org/abs/1812.08934
@ -974,13 +1003,13 @@ def _gen_chamnet_v2(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
num_features=1280, # no idea what this is? try mobile/mnasnet default?
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -988,7 +1017,7 @@ def _gen_chamnet_v2(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_fbnetc(depth_multiplier, num_classes=1000, **kwargs):
def _gen_fbnetc(channel_multiplier, num_classes=1000, **kwargs):
""" FBNet-C
Paper: https://arxiv.org/abs/1812.03443
@ -1008,13 +1037,13 @@ def _gen_fbnetc(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=16,
num_features=1984, # paper suggests this, but is not 100% clear
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -1022,13 +1051,13 @@ def _gen_fbnetc(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_spnasnet(depth_multiplier, num_classes=1000, **kwargs):
def _gen_spnasnet(channel_multiplier, num_classes=1000, **kwargs):
"""Creates the Single-Path NAS model from search targeted for Pixel1 phone.
Paper: https://arxiv.org/abs/1904.02877
Args:
depth_multiplier: multiplier to number of channels per layer.
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
@ -1048,12 +1077,12 @@ def _gen_spnasnet(depth_multiplier, num_classes=1000, **kwargs):
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
arch_def,
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
**kwargs
@ -1061,6 +1090,41 @@ def _gen_spnasnet(depth_multiplier, num_classes=1000, **kwargs):
return model
def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=1000, **kwargs):
"""Creates a MobileNet-V3 model.
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
Paper: https://arxiv.org/abs/1905.11946
Args:
channel_multiplier: multiplier to number of channels per layer
depth_multiplier: multiplier to number of repeats per stage
"""
arch_def = [
['ds_r1_k3_s1_e1_c16_se0.25'],
['ir_r2_k3_s2_e6_c24_se0.25'],
['ir_r2_k5_s2_e6_c40_se0.25'],
['ir_r3_k3_s2_e6_c80_se0.25'],
['ir_r3_k5_s1_e6_c112_se0.25'],
['ir_r4_k5_s2_e6_c192_se0.25'],
['ir_r1_k3_s1_e6_c320_se0.25'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
_decode_arch_def(arch_def, depth_multiplier),
num_classes=num_classes,
stem_size=32,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
act_fn=swish,
**kwargs
)
return model
def mnasnet_050(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
""" MNASNet B1, depth multiplier of 0.5. """
default_cfg = default_cfgs['mnasnet_050']
@ -1270,5 +1334,81 @@ def spnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
# EfficientNet params
# (width_coefficient, depth_coefficient, resolution, dropout_rate)
# 'efficientnet-b0': (1.0, 1.0, 224, 0.2),
# 'efficientnet-b1': (1.0, 1.1, 240, 0.2),
# 'efficientnet-b2': (1.1, 1.2, 260, 0.3),
# 'efficientnet-b3': (1.2, 1.4, 300, 0.3),
# 'efficientnet-b4': (1.4, 1.8, 380, 0.4),
# 'efficientnet-b5': (1.6, 2.2, 456, 0.4),
# 'efficientnet-b6': (1.8, 2.6, 528, 0.5),
# 'efficientnet-b7': (2.0, 3.1, 600, 0.5),
def efficientnet_b0(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
default_cfg = default_cfgs['efficientnet_b0']
# NOTE dropout should be 0.2 for train
model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.0,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def efficientnet_b1(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
default_cfg = default_cfgs['efficientnet_b1']
# NOTE dropout should be 0.2 for train
model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.1,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def efficientnet_b2(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
default_cfg = default_cfgs['efficientnet_b2']
# NOTE dropout should be 0.3 for train
model = _gen_efficientnet(
channel_multiplier=1.1, depth_multiplier=1.2,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def efficientnet_b3(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
default_cfg = default_cfgs['efficientnet_b3']
# NOTE dropout should be 0.3 for train
model = _gen_efficientnet(
channel_multiplier=1.2, depth_multiplier=1.4,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def efficientnet_b4(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
default_cfg = default_cfgs['efficientnet_b4']
# NOTE dropout should be 0.4 for train
model = _gen_efficientnet(
channel_multiplier=1.4, depth_multiplier=1.8,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def genmobilenet_model_names():
return set(_models)

Loading…
Cancel
Save