diff --git a/README.md b/README.md index 911fd88f..3e8c6170 100644 --- a/README.md +++ b/README.md @@ -53,6 +53,24 @@ The default dropout rate is 0. The default optimizer is SGD, but some other choices include Adam ("adam"), RMSProp ("rmsprop"), etc. The optimizer choices are in the timm/optim/optim_factory.py file. +## Run training with the EfficientNet-B2 model + +There are a couple of examples for running different kinds of EfficientNet models. The one below is for EfficientNet-B2, but it is also possible to run EfficientNet-B3 and EfficientNet-B0. + +### EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5 +These params are for dual Titan RTX cards with NVIDIA Apex installed: + +`./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016` + +Breakdown of the arguments used: + +`./distributed_train.sh --model efficientnet_b2 -b --sched --epochs --decay-epochs --decay-rate --opt --opt-eps -j --warmup-lr --weight-decay --drop --drop-connect --model-ema --model-ema-decay --aa --remode --reprob --amp --lr ` + + +The log interval parameter may also be helpful here: + +`--log-interval ` + ---------------------------------------------------------------------------------------- ## What's New