From 780c0a96a41018b02872dea5f658e86d456c1916 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Sat, 18 May 2019 12:29:30 -0700 Subject: [PATCH] Change args for RandomErasing so only one required for pixel/color mode --- data/loader.py | 8 ++++---- data/random_erasing.py | 29 +++++++++++++++++++++-------- train.py | 6 +++--- 3 files changed, 28 insertions(+), 15 deletions(-) diff --git a/data/loader.py b/data/loader.py index 31663c9c..2e36c800 100644 --- a/data/loader.py +++ b/data/loader.py @@ -18,7 +18,7 @@ class PrefetchLoader: def __init__(self, loader, rand_erase_prob=0., - rand_erase_pp=False, + rand_erase_mode='const', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD): self.loader = loader @@ -26,7 +26,7 @@ class PrefetchLoader: self.std = torch.tensor([x * 255 for x in std]).cuda().view(1, 3, 1, 1) if rand_erase_prob > 0.: self.random_erasing = RandomErasing( - probability=rand_erase_prob, per_pixel=rand_erase_pp) + probability=rand_erase_prob, mode=rand_erase_mode) else: self.random_erasing = None @@ -68,7 +68,7 @@ def create_loader( is_training=False, use_prefetcher=True, rand_erase_prob=0., - rand_erase_pp=False, + rand_erase_mode='const', interpolation='bilinear', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, @@ -121,7 +121,7 @@ def create_loader( loader = PrefetchLoader( loader, rand_erase_prob=rand_erase_prob if is_training else 0., - rand_erase_pp=rand_erase_pp, + rand_erase_mode=rand_erase_mode, mean=mean, std=std) diff --git a/data/random_erasing.py b/data/random_erasing.py index 8434179c..43f5f57e 100644 --- a/data/random_erasing.py +++ b/data/random_erasing.py @@ -5,7 +5,10 @@ import math import torch -def _get_patch(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'): +def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'): + # NOTE I've seen CUDA illegal memory access errors being caused by the normal_() + # paths, flip the order so normal is run on CPU if this becomes a problem + # ie torch.empty(patch_size, dtype=dtype).normal_().to(device=device) if per_pixel: return torch.empty( patch_size, dtype=dtype, device=device).normal_() @@ -27,20 +30,29 @@ class RandomErasing: sl: Minimum proportion of erased area against input image. sh: Maximum proportion of erased area against input image. min_aspect: Minimum aspect ratio of erased area. - per_pixel: random value for each pixel in the erase region, precedence over rand_color - rand_color: random color for whole erase region, 0 if neither this or per_pixel set + mode: pixel color mode, one of 'const', 'rand', or 'pixel' + 'const' - erase block is constant color of 0 for all channels + 'rand' - erase block is same per-cannel random (normal) color + 'pixel' - erase block is per-pixel random (normal) color """ def __init__( self, probability=0.5, sl=0.02, sh=1/3, min_aspect=0.3, - per_pixel=False, rand_color=False, device='cuda'): + mode='const', device='cuda'): self.probability = probability self.sl = sl self.sh = sh self.min_aspect = min_aspect - self.per_pixel = per_pixel # per pixel random, bounded by [pl, ph] - self.rand_color = rand_color # per block random, bounded by [pl, ph] + mode = mode.lower() + self.rand_color = False + self.per_pixel = False + if mode == 'rand': + self.rand_color = True # per block random normal + elif mode == 'pixel': + self.per_pixel = True # per pixel random normal + else: + assert not mode or mode == 'const' self.device = device def _erase(self, img, chan, img_h, img_w, dtype): @@ -55,8 +67,9 @@ class RandomErasing: if w < img_w and h < img_h: top = random.randint(0, img_h - h) left = random.randint(0, img_w - w) - img[:, top:top + h, left:left + w] = _get_patch( - self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=self.device) + img[:, top:top + h, left:left + w] = _get_pixels( + self.per_pixel, self.rand_color, (chan, h, w), + dtype=dtype, device=self.device) break def __call__(self, input): diff --git a/train.py b/train.py index d3f7aaf1..644db18b 100644 --- a/train.py +++ b/train.py @@ -69,8 +69,8 @@ parser.add_argument('--drop', type=float, default=0.0, metavar='DROP', help='Dropout rate (default: 0.1)') parser.add_argument('--reprob', type=float, default=0.4, metavar='PCT', help='Random erase prob (default: 0.4)') -parser.add_argument('--repp', action='store_true', default=False, - help='Random erase per-pixel (default: False)') +parser.add_argument('--remode', type=str, default='const', + help='Random erase mode (default: "const")') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR', @@ -223,7 +223,7 @@ def main(): is_training=True, use_prefetcher=True, rand_erase_prob=args.reprob, - rand_erase_pp=args.repp, + rand_erase_mode=args.remode, interpolation='random', # FIXME cleanly resolve this? data_config['interpolation'], mean=data_config['mean'], std=data_config['std'],