Add parameter to change normalization type

pull/1150/head
Christoph Reich 3 years ago
parent 2a4f6c13dd
commit 74a04e0016

@ -408,6 +408,7 @@ class SwinTransformerBlock(nn.Module):
dropout_attention (float): Dropout rate of attention map
dropout_path (float): Dropout in main path
sequential_self_attention (bool): If true sequential self-attention is performed
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized
"""
def __init__(self,
@ -420,7 +421,8 @@ class SwinTransformerBlock(nn.Module):
dropout: float = 0.0,
dropout_attention: float = 0.0,
dropout_path: float = 0.0,
sequential_self_attention: bool = False) -> None:
sequential_self_attention: bool = False,
norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
# Call super constructor
super(SwinTransformerBlock, self).__init__()
# Save parameters
@ -436,8 +438,8 @@ class SwinTransformerBlock(nn.Module):
self.shift_size: int = shift_size
self.make_windows: bool = True
# Init normalization layers
self.normalization_1: nn.Module = nn.LayerNorm(normalized_shape=in_channels)
self.normalization_2: nn.Module = nn.LayerNorm(normalized_shape=in_channels)
self.normalization_1: nn.Module = norm_layer(normalized_shape=in_channels)
self.normalization_2: nn.Module = norm_layer(normalized_shape=in_channels)
# Init window attention module
self.window_attention: WindowMultiHeadAttention = WindowMultiHeadAttention(
in_features=in_channels,
@ -569,6 +571,7 @@ class DeformableSwinTransformerBlock(SwinTransformerBlock):
dropout_path (float): Dropout in main path
sequential_self_attention (bool): If true sequential self-attention is performed
offset_downscale_factor (int): Downscale factor of offset network
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized
"""
def __init__(self,
@ -582,7 +585,8 @@ class DeformableSwinTransformerBlock(SwinTransformerBlock):
dropout_attention: float = 0.0,
dropout_path: float = 0.0,
sequential_self_attention: bool = False,
offset_downscale_factor: int = 2) -> None:
offset_downscale_factor: int = 2,
norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
# Call super constructor
super(DeformableSwinTransformerBlock, self).__init__(
in_channels=in_channels,
@ -594,7 +598,8 @@ class DeformableSwinTransformerBlock(SwinTransformerBlock):
dropout=dropout,
dropout_attention=dropout_attention,
dropout_path=dropout_path,
sequential_self_attention=sequential_self_attention
sequential_self_attention=sequential_self_attention,
norm_layer=norm_layer
)
# Save parameter
self.offset_downscale_factor: int = offset_downscale_factor
@ -684,14 +689,16 @@ class PatchMerging(nn.Module):
Args:
in_channels (int): Number of input channels
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized.
"""
def __init__(self,
in_channels: int) -> None:
in_channels: int,
norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
# Call super constructor
super(PatchMerging, self).__init__()
# Init normalization
self.normalization: nn.Module = nn.LayerNorm(normalized_shape=4 * in_channels)
self.normalization: nn.Module = norm_layer(normalized_shape=4 * in_channels)
# Init linear mapping
self.linear_mapping: nn.Module = nn.Linear(in_features=4 * in_channels, out_features=2 * in_channels,
bias=False)
@ -728,12 +735,14 @@ class PatchEmbedding(nn.Module):
out_channels (int): Number of output channels
patch_size (int): Patch size to be utilized
image_size (int): Image size to be used
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized
"""
def __init__(self,
in_channels: int = 3,
out_channels: int = 96,
patch_size: int = 4) -> None:
patch_size: int = 4,
norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
# Call super constructor
super(PatchEmbedding, self).__init__()
# Save parameters
@ -743,7 +752,7 @@ class PatchEmbedding(nn.Module):
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size))
# Init layer normalization
self.normalization: nn.Module = nn.LayerNorm(normalized_shape=out_channels)
self.normalization: nn.Module = norm_layer(normalized_shape=out_channels)
def forward(self,
input: torch.Tensor) -> torch.Tensor:
@ -777,6 +786,7 @@ class SwinTransformerStage(nn.Module):
dropout (float): Dropout in input mapping
dropout_attention (float): Dropout rate of attention map
dropout_path (float): Dropout in main path
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. Default: nn.LayerNorm
use_checkpoint (bool): If true checkpointing is utilized
sequential_self_attention (bool): If true sequential self-attention is performed
use_deformable_block (bool): If true deformable block is used
@ -803,7 +813,8 @@ class SwinTransformerStage(nn.Module):
self.use_checkpoint: bool = use_checkpoint
self.downscale: bool = downscale
# Init downsampling
self.downsample: nn.Module = PatchMerging(in_channels=in_channels) if downscale else nn.Identity()
self.downsample: nn.Module = PatchMerging(in_channels=in_channels, norm_layer=norm_layer) \
if downscale else nn.Identity()
# Update resolution and channels
self.input_resolution: Tuple[int, int] = (input_resolution[0] // 2, input_resolution[1] // 2) \
if downscale else input_resolution
@ -821,7 +832,8 @@ class SwinTransformerStage(nn.Module):
dropout=dropout,
dropout_attention=dropout_attention,
dropout_path=dropout_path[index] if isinstance(dropout_path, list) else dropout_path,
sequential_self_attention=sequential_self_attention)
sequential_self_attention=sequential_self_attention,
norm_layer=norm_layer)
for index in range(depth)])
def update_resolution(self,
@ -914,7 +926,7 @@ class SwinTransformerV2CR(nn.Module):
self.num_features: int = int(embed_dim * (2 ** len(depths) - 1))
# Init patch embedding
self.patch_embedding: nn.Module = PatchEmbedding(in_channels=in_chans, out_channels=embed_dim,
patch_size=patch_size)
patch_size=patch_size, norm_layer=norm_layer)
# Compute patch resolution
patch_resolution: Tuple[int, int] = (img_size[0] // patch_size, img_size[1] // patch_size)
# Path dropout dependent on depth
@ -937,7 +949,8 @@ class SwinTransformerV2CR(nn.Module):
dropout_path=drop_path_rate[sum(depths[:index]):sum(depths[:index + 1])],
use_checkpoint=use_checkpoint,
sequential_self_attention=sequential_self_attention,
use_deformable_block=use_deformable_block and (index > 0)
use_deformable_block=use_deformable_block and (index > 0),
norm_layer=norm_layer
))
# Init final adaptive average pooling, and classification head
self.average_pool: nn.Module = nn.AdaptiveAvgPool2d(1)
@ -1165,17 +1178,3 @@ def swin_v2_cr_giant_patch4_window7_224(pretrained=False, **kwargs):
model_kwargs = dict(img_size=(224, 224), patch_size=4, window_size=7, embed_dim=512, depths=(2, 2, 42, 2),
num_heads=(16, 32, 64, 128), **kwargs)
return _create_swin_transformer_v2_cr('swin_v2_cr_giant_patch4_window7_224', pretrained=pretrained, **model_kwargs)
if __name__ == '__main__':
model = swin_v2_cr_tiny_patch4_window12_384(pretrained=False)
model = swin_v2_cr_tiny_patch4_window7_224(pretrained=False)
model = swin_v2_cr_small_patch4_window12_384(pretrained=False)
model = swin_v2_cr_small_patch4_window7_224(pretrained=False)
model = swin_v2_cr_base_patch4_window12_384(pretrained=False)
model = swin_v2_cr_base_patch4_window7_224(pretrained=False)
model = swin_v2_cr_large_patch4_window12_384(pretrained=False)
model = swin_v2_cr_large_patch4_window7_224(pretrained=False)

Loading…
Cancel
Save