|
|
|
@ -205,8 +205,10 @@ class BenchmarkRunner:
|
|
|
|
|
self.num_classes = self.model.num_classes
|
|
|
|
|
self.param_count = count_params(self.model)
|
|
|
|
|
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count))
|
|
|
|
|
self.scripted = False
|
|
|
|
|
if torchscript:
|
|
|
|
|
self.model = torch.jit.script(self.model)
|
|
|
|
|
self.scripted = True
|
|
|
|
|
|
|
|
|
|
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size)
|
|
|
|
|
self.input_size = data_config['input_size']
|
|
|
|
@ -275,14 +277,14 @@ class InferenceBenchmarkRunner(BenchmarkRunner):
|
|
|
|
|
img_size=self.input_size[-1],
|
|
|
|
|
param_count=round(self.param_count / 1e6, 2),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if has_deepspeed_profiling:
|
|
|
|
|
macs, _ = profile_deepspeed(self.model, self.input_size)
|
|
|
|
|
results['gmacs'] = round(macs / 1e9, 2)
|
|
|
|
|
elif has_fvcore_profiling:
|
|
|
|
|
macs, activations = profile_fvcore(self.model, self.input_size)
|
|
|
|
|
results['gmacs'] = round(macs / 1e9, 2)
|
|
|
|
|
results['macts'] = round(activations / 1e6, 2)
|
|
|
|
|
if not self.scripted:
|
|
|
|
|
if has_deepspeed_profiling:
|
|
|
|
|
macs, _ = profile_deepspeed(self.model, self.input_size)
|
|
|
|
|
results['gmacs'] = round(macs / 1e9, 2)
|
|
|
|
|
elif has_fvcore_profiling:
|
|
|
|
|
macs, activations = profile_fvcore(self.model, self.input_size)
|
|
|
|
|
results['gmacs'] = round(macs / 1e9, 2)
|
|
|
|
|
results['macts'] = round(activations / 1e6, 2)
|
|
|
|
|
|
|
|
|
|
_logger.info(
|
|
|
|
|
f"Inference benchmark of {self.model_name} done. "
|
|
|
|
|