parent
624266148d
commit
709d5e0d9d
@ -0,0 +1,87 @@
|
||||
""" Lion Optimizer
|
||||
Paper: `Symbolic Discovery of Optimization Algorithms` - https://arxiv.org/abs/2302.06675
|
||||
Original Impl: https://github.com/google/automl/tree/master/lion
|
||||
"""
|
||||
# Copyright 2023 Google Research. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
|
||||
class Lion(Optimizer):
|
||||
r"""Implements Lion algorithm."""
|
||||
|
||||
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
|
||||
"""Initialize the hyperparameters.
|
||||
|
||||
Args:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-4)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.99))
|
||||
weight_decay (float, optional): weight decay coefficient (default: 0)
|
||||
"""
|
||||
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError('Invalid learning rate: {}'.format(lr))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
|
||||
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Args:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
|
||||
Returns:
|
||||
the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
# Perform stepweight decay
|
||||
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
||||
|
||||
grad = p.grad
|
||||
state = self.state[p]
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p)
|
||||
|
||||
exp_avg = state['exp_avg']
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
# Weight update
|
||||
update = exp_avg * beta1 + grad * (1 - beta1)
|
||||
p.add_(torch.sign(update), alpha=-group['lr'])
|
||||
# Decay the momentum running average coefficient
|
||||
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
||||
|
||||
return loss
|
Loading…
Reference in new issue