diff --git a/timm/models/EcaModule.py b/timm/models/EcaModule.py index b91b5801..fab205cb 100644 --- a/timm/models/EcaModule.py +++ b/timm/models/EcaModule.py @@ -1,14 +1,16 @@ -''' +""" ECA module from ECAnet -original paper: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks + +paper: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks https://arxiv.org/abs/1910.03151 -https://github.com/BangguWu/ECANet -original ECA model borrowed from original github -modified circular ECA implementation and -adoptation for use in pytorch image models package +Original ECA model borrowed from https://github.com/BangguWu/ECANet + +Modified circular ECA implementation and adaption for use in timm package by Chris Ha https://github.com/VRandme +Original License: + MIT License Copyright (c) 2019 BangguWu, Qilong Wang @@ -30,13 +32,14 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -''' +""" import math from torch import nn import torch.nn.functional as F + class EcaModule(nn.Module): - """Constructs a ECA module. + """Constructs an ECA module. Args: channel: Number of channels of the input feature map for use in adaptive kernel sizes @@ -59,9 +62,9 @@ class EcaModule(nn.Module): self.sigmoid = nn.Sigmoid() def forward(self, x): - # feature descriptor on the global spatial information + # Feature descriptor on the global spatial information y = self.avg_pool(x) - # reshape for convolution + # Reshape for convolution y = y.view(x.shape[0], 1, -1) # Two different branches of ECA module y = self.conv(y) @@ -69,10 +72,12 @@ class EcaModule(nn.Module): y = self.sigmoid(y.view(x.shape[0], -1, 1, 1)) return x * y.expand_as(x) + class CecaModule(nn.Module): """Constructs a circular ECA module. - the primary difference is that the conv uses a circular padding rather than zero padding. - This is because unlike images, the channels themselves do not have inherent ordering nor + + ECA module where the conv uses circular padding rather than zero padding. + Unlike the spatial dimension, the channels do not have inherent ordering nor locality. Although this module in essence, applies such an assumption, it is unnecessary to limit the channels on either "edge" from being circularly adapted to each other. This will fundamentally increase connectivity and possibly increase performance metrics @@ -97,7 +102,7 @@ class CecaModule(nn.Module): k_size = t if t % 2 else t + 1 self.avg_pool = nn.AdaptiveAvgPool2d(1) - #pytorch circular padding mode is bugged as of pytorch 1.4 + #pytorch circular padding mode is buggy as of pytorch 1.4 #see https://github.com/pytorch/pytorch/pull/17240 #implement manual circular padding @@ -106,10 +111,10 @@ class CecaModule(nn.Module): self.sigmoid = nn.Sigmoid() def forward(self, x): - # feature descriptor on the global spatial information + # Feature descriptor on the global spatial information y = self.avg_pool(x) - #manually implement circular padding, F.pad does not seemed to be bugged + # Manually implement circular padding, F.pad does not seemed to be bugged y = F.pad(y.view(x.shape[0], 1, -1), (self.padding, self.padding), mode='circular') # Two different branches of ECA module