diff --git a/data/transforms.py b/data/transforms.py index eecde8bd..5fe7da60 100644 --- a/data/transforms.py +++ b/data/transforms.py @@ -183,11 +183,11 @@ def transforms_imagenet_eval( if isinstance(img_size, tuple): assert len(img_size) == 2 - if img_size[0] == img_size[1]: + if img_size[-1] == img_size[-2]: # fall-back to older behaviour so Resize scales to shortest edge if target is square scale_size = int(math.floor(img_size[0] / crop_pct)) else: - scale_size = tuple([int(x[0] / crop_pct) for x in img_size]) + scale_size = tuple([int(x / crop_pct) for x in img_size]) else: scale_size = int(math.floor(img_size / crop_pct)) diff --git a/models/senet.py b/models/senet.py index 28438683..75ffc398 100644 --- a/models/senet.py +++ b/models/senet.py @@ -25,7 +25,7 @@ __all__ = ['SENet', 'senet154', 'seresnet50', 'seresnet101', 'seresnet152', def _cfg(url=''): return { - 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 244), 'pool_size': (7, 7), + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'layer0.conv1', 'classifier': 'last_linear',