Merge branch 'master' into features

pull/175/head
Ross Wightman 4 years ago
commit 68fd8a267b

@ -0,0 +1,62 @@
### June 11, 2020
Bunch of changes:
* DenseNet models updated with memory efficient addition from torchvision (fixed a bug), blur pooling and deep stem additions
* VoVNet V1 and V2 models added, 39 V2 variant (ese_vovnet_39b) trained to 79.3 top-1
* Activation factory added along with new activations:
* select act at model creation time for more flexibility in using activations compatible with scripting or tracing (ONNX export)
* hard_mish (experimental) added with memory-efficient grad, along with ME hard_swish
* context mgr for setting exportable/scriptable/no_jit states
* Norm + Activation combo layers added with initial trial support in DenseNet and VoVNet along with impl of EvoNorm and InplaceAbn wrapper that fit the interface
* Torchscript works for all but two of the model types as long as using Pytorch 1.5+, tests added for this
* Some import cleanup and classifier reset changes, all models will have classifier reset to nn.Identity on reset_classifer(0) call
* Prep for 0.1.28 pip release
### May 12, 2020
* Add ResNeSt models (code adapted from https://github.com/zhanghang1989/ResNeSt, paper https://arxiv.org/abs/2004.08955))
### May 3, 2020
* Pruned EfficientNet B1, B2, and B3 (https://arxiv.org/abs/2002.08258) contributed by [Yonathan Aflalo](https://github.com/yoniaflalo)
### May 1, 2020
* Merged a number of execellent contributions in the ResNet model family over the past month
* BlurPool2D and resnetblur models initiated by [Chris Ha](https://github.com/VRandme), I trained resnetblur50 to 79.3.
* TResNet models and SpaceToDepth, AntiAliasDownsampleLayer layers by [mrT23](https://github.com/mrT23)
* ecaresnet (50d, 101d, light) models and two pruned variants using pruning as per (https://arxiv.org/abs/2002.08258) by [Yonathan Aflalo](https://github.com/yoniaflalo)
* 200 pretrained models in total now with updated results csv in results folder
### April 5, 2020
* Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
* 3.5M param MobileNet-V2 100 @ 73%
* 4.5M param MobileNet-V2 110d @ 75%
* 6.1M param MobileNet-V2 140 @ 76.5%
* 5.8M param MobileNet-V2 120d @ 77.3%
### March 18, 2020
* Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
* Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams)
### Feb 29, 2020
* New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1
* IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models
* overall results similar to a bit better training from scratch on a few smaller models tried
* performance early in training seems consistently improved but less difference by end
* set `fix_group_fanout=False` in `_init_weight_goog` fn if you need to reproducte past behaviour
* Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training
### Feb 18, 2020
* Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268):
* Move layer/module impl into `layers` subfolder/module of `models` and organize in a more granular fashion
* ResNet downsample paths now properly support dilation (output stride != 32) for avg_pool ('D' variant) and 3x3 (SENets) networks
* Add Selective Kernel Nets on top of ResNet base, pretrained weights
* skresnet18 - 73% top-1
* skresnet34 - 76.9% top-1
* skresnext50_32x4d (equiv to SKNet50) - 80.2% top-1
* ECA and CECA (circular padding) attention layer contributed by [Chris Ha](https://github.com/VRandme)
* CBAM attention experiment (not the best results so far, may remove)
* Attention factory to allow dynamically selecting one of SE, ECA, CBAM in the `.se` position for all ResNets
* Add DropBlock and DropPath (formerly DropConnect for EfficientNet/MobileNetv3) support to all ResNet variants
* Full dataset results updated that incl NoisyStudent weights and 2 of the 3 SK weights
### Feb 12, 2020
* Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)

@ -0,0 +1,38 @@
# Getting Started
## Install
The library can be installed with pip:
```
pip install timm
```
!!! info "Conda Environment"
All development and testing has been done in Conda Python 3 environments
on Linux x86-64 systems, specifically Python 3.6.x and 3.7.x.
To install `timm` in a conda environment:
```
conda create -n torch-env
conda activate torch-env
conda install -c pytorch pytorch torchvision cudatoolkit=10.1
conda install pyyaml
pip install timm
```
## Load Pretrained Model
Pretrained models can be loaded using `timm.create_model`
```python
import timm
m = timm.create_model('mobilenetv3_100', pretrained=True)
m.eval()
```
To load a different model see [the list of pretrained weights](/models
/#pretrained-imagenet-weights).

@ -0,0 +1,275 @@
## Architectures
### ResNet / ResNeXt
(from [torchvision](https://github.com/pytorch/vision/tree
/master/torchvision/models) with mods by myself)
* ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNeXt50 (32x4d), ResNeXt101 (32x4d and 64x4d)
* 'Bag of Tricks' / Gluon C, D, E, S variations (https://arxiv.org/abs/1812.01187)
* Instagram trained / ImageNet tuned ResNeXt101-32x8d to 32x48d from from [facebookresearch](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)
* Res2Net (https://github.com/gasvn/Res2Net, https://arxiv.org/abs/1904.01169)
* Selective Kernel (SK) Nets (https://arxiv.org/abs/1903.06586)
* ResNeSt (code adapted from https://github.com/zhanghang1989/ResNeSt, paper https://arxiv.org/abs/2004.08955)
### DLA
* Original (https://github.com/ucbdrive/dla, https://arxiv.org/abs/1707.06484)
* Res2Net (https://github.com/gasvn/Res2Net, https://arxiv.org/abs/1904.01169)
### DenseNet
(from [torchvision](https://github.com/pytorch/vision/tree/master
/torchvision/models))
* DenseNet-121, DenseNet-169, DenseNet-201, DenseNet-161
### Squeeze-and-Excitation ResNet/ResNeXt
(from [Cadene](https://github.com
/Cadene/pretrained-models.pytorch) with some pretrained weight additions by myself)
* SENet-154, SE-ResNet-18, SE-ResNet-34, SE-ResNet-50, SE-ResNet-101, SE-ResNet-152, SE-ResNeXt-26 (32x4d), SE-ResNeXt50 (32x4d), SE-ResNeXt101 (32x4d)
### Inception-V3
(from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models))
### Inception-ResNet-V2 and Inception-V4
(from [Cadene](https://github.com/Cadene/pretrained-models.pytorch) )
### Xception
* Original variant from [Cadene](https://github.com/Cadene/pretrained-models.pytorch)
* MXNet Gluon 'modified aligned' Xception-65 and 71 models from [Gluon ModelZoo](https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo)
### PNasNet & NASNet-A
(from [Cadene](https://github.com/Cadene/pretrained-models.pytorch))
### DPN
(from [myself](https://github.com/rwightman/pytorch-dpn-pretrained))
* DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107
### EfficientNet
(from my standalone [GenEfficientNet](https://github.com/rwightman/gen-efficientnet-pytorch)) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks
* EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252)
* EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665)
* EfficientNet (B0-B7) (https://arxiv.org/abs/1905.11946)
* EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
* MixNet (https://arxiv.org/abs/1907.09595)
* MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
* MobileNet-V2 (https://arxiv.org/abs/1801.04381)
* FBNet-C (https://arxiv.org/abs/1812.03443)
* Single-Path NAS (https://arxiv.org/abs/1904.02877)
### MobileNet-V3
(https://arxiv.org/abs/1905.02244)
### HRNet
* code from https://github.com/HRNet/HRNet-Image-Classification, paper https://arxiv.org/abs/1908.07919
### SelecSLS
* code from https://github.com/mehtadushy/SelecSLS-Pytorch, paper https://arxiv.org/abs/1907.00837
### TResNet
* code from https://github.com/mrT23/TResNet, paper https://arxiv.org/abs/2003.13630
### RegNet
* paper `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678
* reference code at https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
### VovNet V2 / V1
* paper `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667
* reference code at https://github.com/youngwanLEE/vovnet-detectron2
Use the `--model` arg to specify model for train, validation, inference scripts. Match the all lowercase
creation fn for the model you'd like.
## Pretrained Imagenet Weights
### Self-trained Weights
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
|---|---|---|---|---|---|
| efficientnet_b3a | 81.874 (18.126) | 95.840 (4.160) | 12.23M | bicubic | 320 (1.0 crop) |
| efficientnet_b3 | 81.498 (18.502) | 95.718 (4.282) | 12.23M | bicubic | 300 |
| skresnext50d_32x4d | 81.278 (18.722) | 95.366 (4.634) | 27.5M | bicubic | 288 (1.0 crop) |
| efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11M | bicubic | 288 (1.0 crop) |
| mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90M | bicubic | 224 |
| efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11M | bicubic | 260 |
| skresnext50d_32x4d | 80.156 (19.844) | 94.642 (5.358) | 27.5M | bicubic | 224 |
| resnext50_32x4d | 79.762 (20.238) | 94.600 (5.400) | 25M | bicubic | 224 |
| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1M | bicubic | 224 |
| ese_vovnet39b | 79.320 (20.680) | 94.710 (5.290) | 24.6M | bicubic | 224 |
| resnetblur50 | 79.290 (20.710) | 94.632 (5.368) | 25.6M | bicubic | 224 |
| resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6M | bicubic | 224 |
| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33M | bicubic | 224 |
| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79M | bicubic | 240 |
| efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44M | bicubic | 224 |
| seresnext26t_32x4d | 77.998 (22.002) | 93.708 (6.292) | 16.8M | bicubic | 224 |
| seresnext26tn_32x4d | 77.986 (22.014) | 93.746 (6.254) | 16.8M | bicubic | 224 |
| efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.29M | bicubic | 224 |
| seresnext26d_32x4d | 77.602 (22.398) | 93.608 (6.392) | 16.8M | bicubic | 224 |
| mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8M | bicubic | 224 |
| mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01M | bicubic | 224 |
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8M | bicubic | 224 |
| skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2M | bicubic | 224 |
| ese_vovnet19b_dw | 76.798 (23.202) | 93.268 (6.732) | 6.5M | bicubic | 224 |
| resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16M | bicubic | 224 |
| densenetblur121d | 76.576 (23.424) | 93.190 (6.810) | 8.0M | bicubic | 224 |
| mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1M | bicubic | 224 |
| mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13M | bicubic | 224 |
| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5M | bicubic | 224 |
| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic | 224 |
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89M | bicubic | 224 |
| resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16M | bicubic | 224 |
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear | 224 |
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22M | bilinear | 224 |
| mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5M | bicubic | 224 |
| seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22M | bilinear | 224 |
| mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.38M | bicubic | 224 |
| spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.42M | bilinear | 224 |
| skresnet18 | 73.038 (26.962) | 91.168 (8.832) | 11.9M | bicubic | 224 |
| mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5M | bicubic | 224 |
| seresnet18 | 71.742 (28.258) | 90.334 (9.666) | 11.8M | bicubic | 224 |
### Ported Weights
For the models below, the model code and weight porting from Tensorflow or MXNet Gluon to Pytorch was done by myself. There are weights/models ported by others included in this repository, they are not listed below.
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
|---|---|---|---|---|---|
| tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 |
| tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 |
| tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454)f | 480 | bicubic | 475 |
| tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 |
| tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 |
| tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 |
| tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 |
| tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 |
| tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 |
| tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 |
| tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 |
| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 |
| tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 |
| tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 |
| tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 |
| tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 |
| tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 |
| tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 |
| tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 |
| tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 |
| tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 |
| tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 |
| tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 |
| tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 |
| tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 |
| tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 |
| tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 |
| tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 |
| tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 |
| tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 |
| tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 |
| tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 |
| tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 |
| tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 |
| tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 |
| tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 |
| tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 |
| tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 |
| tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 |
| tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 |
| tf_efficientnet_lite4 | 81.528 (18.472) | 95.668 (4.332) | 13.00 | bilinear | 380 |
| tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 |
| tf_efficientnet_lite4 *tfp | 81.502 (18.498) | 95.676 (4.324) | 13.00 | bilinear | 380 |
| tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 |
| gluon_senet154 | 81.224 (18.776) | 95.356 (4.644) | 115.09 | bicubic | 224 |
| gluon_resnet152_v1s | 81.012 (18.988) | 95.416 (4.584) | 60.32 | bicubic | 224 |
| gluon_seresnext101_32x4d | 80.902 (19.098) | 95.294 (4.706) | 48.96 | bicubic | 224 |
| gluon_seresnext101_64x4d | 80.890 (19.110) | 95.304 (4.696) | 88.23 | bicubic | 224 |
| gluon_resnext101_64x4d | 80.602 (19.398) | 94.994 (5.006) | 83.46 | bicubic | 224 |
| tf_efficientnet_el | 80.534 (19.466) | 95.190 (4.810) | 10.59 | bicubic | 300 |
| tf_efficientnet_el *tfp | 80.476 (19.524) | 95.200 (4.800) | 10.59 | bicubic | 300 |
| gluon_resnet152_v1d | 80.470 (19.530) | 95.206 (4.794) | 60.21 | bicubic | 224 |
| gluon_resnet101_v1d | 80.424 (19.576) | 95.020 (4.980) | 44.57 | bicubic | 224 |
| tf_efficientnet_b2_ap *tfp | 80.420 (19.580) | 95.040 (4.960) | 9.11 | bicubic | 260 |
| gluon_resnext101_32x4d | 80.334 (19.666) | 94.926 (5.074) | 44.18 | bicubic | 224 |
| tf_efficientnet_b2_ap | 80.306 (19.694) | 95.028 (4.972) | 9.11 | bicubic | 260 |
| gluon_resnet101_v1s | 80.300 (19.700) | 95.150 (4.850) | 44.67 | bicubic | 224 |
| tf_efficientnet_b2 *tfp | 80.188 (19.812) | 94.974 (5.026) | 9.11 | bicubic | 260 |
| tf_efficientnet_b2 | 80.086 (19.914) | 94.908 (5.092) | 9.11 | bicubic | 260 |
| gluon_resnet152_v1c | 79.916 (20.084) | 94.842 (5.158) | 60.21 | bicubic | 224 |
| gluon_seresnext50_32x4d | 79.912 (20.088) | 94.818 (5.182) | 27.56 | bicubic | 224 |
| tf_efficientnet_lite3 | 79.812 (20.188) | 94.914 (5.086) | 8.20 | bilinear | 300 |
| tf_efficientnet_lite3 *tfp | 79.734 (20.266) | 94.838 (5.162) | 8.20 | bilinear | 300 |
| gluon_resnet152_v1b | 79.692 (20.308) | 94.738 (5.262) | 60.19 | bicubic | 224 |
| gluon_xception65 | 79.604 (20.396) | 94.748 (5.252) | 39.92 | bicubic | 299 |
| gluon_resnet101_v1c | 79.544 (20.456) | 94.586 (5.414) | 44.57 | bicubic | 224 |
| tf_efficientnet_b1_ap *tfp | 79.532 (20.468) | 94.378 (5.622) | 7.79 | bicubic | 240 |
| tf_efficientnet_cc_b1_8e *tfp | 79.464 (20.536)| 94.492 (5.508) | 39.7 | bicubic | 240 |
| gluon_resnext50_32x4d | 79.356 (20.644) | 94.424 (5.576) | 25.03 | bicubic | 224 |
| gluon_resnet101_v1b | 79.304 (20.696) | 94.524 (5.476) | 44.55 | bicubic | 224 |
| tf_efficientnet_cc_b1_8e | 79.298 (20.702) | 94.364 (5.636) | 39.7 | bicubic | 240 |
| tf_efficientnet_b1_ap | 79.278 (20.722) | 94.308 (5.692) | 7.79 | bicubic | 240 |
| tf_efficientnet_b1 *tfp | 79.172 (20.828) | 94.450 (5.550) | 7.79 | bicubic | 240 |
| gluon_resnet50_v1d | 79.074 (20.926) | 94.476 (5.524) | 25.58 | bicubic | 224 |
| tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 |
| tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 |
| tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 |
| tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 |
| gluon_inception_v3 | 78.804 (21.196) | 94.380 (5.620) | 27.16M | bicubic | 299 |
| tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 |
| tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 |
| gluon_resnet50_v1s | 78.712 (21.288) | 94.242 (5.758) | 25.68 | bicubic | 224 |
| tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 |
| tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 |
| gluon_resnet50_v1c | 78.010 (21.990) | 93.988 (6.012) | 25.58 | bicubic | 224 |
| tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 |
| tf_inception_v3 | 77.856 (22.144) | 93.644 (6.356) | 27.16M | bicubic | 299 |
| tf_efficientnet_cc_b0_4e *tfp | 77.746 (22.254) | 93.552 (6.448) | 13.3 | bicubic | 224 |
| tf_efficientnet_es *tfp | 77.616 (22.384) | 93.750 (6.250) | 5.44 | bicubic | 224 |
| gluon_resnet50_v1b | 77.578 (22.422) | 93.718 (6.282) | 25.56 | bicubic | 224 |
| adv_inception_v3 | 77.576 (22.424) | 93.724 (6.276) | 27.16M | bicubic | 299 |
| tf_efficientnet_lite2 *tfp | 77.544 (22.456) | 93.800 (6.200) | 6.09 | bilinear | 260 |
| tf_efficientnet_lite2 | 77.460 (22.540) | 93.746 (6.254) | 6.09 | bicubic | 260 |
| tf_efficientnet_b0_ap *tfp | 77.514 (22.486) | 93.576 (6.424) | 5.29 | bicubic | 224 |
| tf_efficientnet_cc_b0_4e | 77.304 (22.696) | 93.332 (6.668) | 13.3 | bicubic | 224 |
| tf_efficientnet_es | 77.264 (22.736) | 93.600 (6.400) | 5.44 | bicubic | 224 |
| tf_efficientnet_b0 *tfp | 77.258 (22.742) | 93.478 (6.522) | 5.29 | bicubic | 224 |
| tf_efficientnet_b0_ap | 77.084 (22.916) | 93.254 (6.746) | 5.29 | bicubic | 224 |
| tf_mixnet_m *tfp | 77.072 (22.928) | 93.368 (6.632) | 5.01 | bilinear | 224 |
| tf_mixnet_m | 76.950 (23.050) | 93.156 (6.844) | 5.01 | bicubic | 224 |
| tf_efficientnet_b0 | 76.848 (23.152) | 93.228 (6.772) | 5.29 | bicubic | 224 |
| tf_efficientnet_lite1 *tfp | 76.764 (23.236) | 93.326 (6.674) | 5.42 | bilinear | 240 |
| tf_efficientnet_lite1 | 76.638 (23.362) | 93.232 (6.768) | 5.42 | bicubic | 240 |
| tf_mixnet_s *tfp | 75.800 (24.200) | 92.788 (7.212) | 4.13 | bilinear | 224 |
| tf_mobilenetv3_large_100 *tfp | 75.768 (24.232) | 92.710 (7.290) | 5.48 | bilinear | 224 |
| tf_mixnet_s | 75.648 (24.352) | 92.636 (7.364) | 4.13 | bicubic | 224 |
| tf_mobilenetv3_large_100 | 75.516 (24.484) | 92.600 (7.400) | 5.48 | bilinear | 224 |
| tf_efficientnet_lite0 *tfp | 75.074 (24.926) | 92.314 (7.686) | 4.65 | bilinear | 224 |
| tf_efficientnet_lite0 | 74.842 (25.158) | 92.170 (7.830) | 4.65 | bicubic | 224 |
| gluon_resnet34_v1b | 74.580 (25.420) | 91.988 (8.012) | 21.80 | bicubic | 224 |
| tf_mobilenetv3_large_075 *tfp | 73.730 (26.270) | 91.616 (8.384) | 3.99 | bilinear | 224 |
| tf_mobilenetv3_large_075 | 73.442 (26.558) | 91.352 (8.648) | 3.99 | bilinear | 224 |
| tf_mobilenetv3_large_minimal_100 *tfp | 72.678 (27.322) | 90.860 (9.140) | 3.92 | bilinear | 224 |
| tf_mobilenetv3_large_minimal_100 | 72.244 (27.756) | 90.636 (9.364) | 3.92 | bilinear | 224 |
| tf_mobilenetv3_small_100 *tfp | 67.918 (32.082) | 87.958 (12.042 | 2.54 | bilinear | 224 |
| tf_mobilenetv3_small_100 | 67.918 (32.082) | 87.662 (12.338) | 2.54 | bilinear | 224 |
| tf_mobilenetv3_small_075 *tfp | 66.142 (33.858) | 86.498 (13.502) | 2.04 | bilinear | 224 |
| tf_mobilenetv3_small_075 | 65.718 (34.282) | 86.136 (13.864) | 2.04 | bilinear | 224 |
| tf_mobilenetv3_small_minimal_100 *tfp | 63.378 (36.622) | 84.802 (15.198) | 2.04 | bilinear | 224 |
| tf_mobilenetv3_small_minimal_100 | 62.898 (37.102) | 84.230 (15.770) | 2.04 | bilinear | 224 |

@ -0,0 +1,34 @@
site_name: 'Pytorch Image Models'
site_description: 'Pretained Image Recognition Models'
repo_name: 'rwightman/pytorch-image-models'
repo_url: 'https://github.com/rwightman/pytorch-image-models'
nav:
- index.md
- models.md
- changes.md
theme:
name: 'material'
feature:
tabs: false
extra_javascript:
- 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML'
markdown_extensions:
- codehilite:
linenums: true
- admonition
- pymdownx.arithmatex
- pymdownx.betterem:
smart_enable: all
- pymdownx.caret
- pymdownx.critic
- pymdownx.details
- pymdownx.emoji:
emoji_generator: !!python/name:pymdownx.emoji.to_svg
- pymdownx.inlinehilite
- pymdownx.magiclink
- pymdownx.mark
- pymdownx.smartsymbols
- pymdownx.superfences
- pymdownx.tasklist:
custom_checkbox: true
- pymdownx.tilde

@ -0,0 +1,2 @@
mkdocs==1.1.2
mkdocs-material==5.4.0

@ -35,5 +35,4 @@ An ImageNet test set of 10,000 images sampled from new images roughly 10 years a
A collection of 7500 images covering 200 of the 1000 ImageNet classes. Images are naturally occuring adversarial examples that confuse typical ImageNet classifiers. This is a challenging dataset, your typical ResNet-50 will score 0% top-1.
## TODO
* Add rank difference, and top-1/top-5 difference from ImageNet-1k validation for the 3 additional test sets
* Explore adding a reduced version of ImageNet-C (Corruptions) and ImageNet-P (Perturbations) from https://github.com/hendrycks/robustness. The originals are huge and image size specific.

@ -0,0 +1,52 @@
import numpy as np
import pandas as pd
results = {
'results-imagenet.csv' : pd.read_csv('results-imagenet.csv'),
'results-imagenetv2-matched-frequency.csv': pd.read_csv('results-imagenetv2-matched-frequency.csv'),
'results-sketch.csv' : pd.read_csv('results-sketch.csv'),
'results-imagenet-a.csv' : pd.read_csv('results-imagenet-a.csv'),
}
def diff(csv_file):
base_models = results['results-imagenet.csv']['model'].values
csv_models = results[csv_file]['model'].values
rank_diff = np.zeros_like(csv_models, dtype='object')
top1_diff = np.zeros_like(csv_models, dtype='object')
top5_diff = np.zeros_like(csv_models, dtype='object')
for rank, model in enumerate(csv_models):
if model in base_models:
base_rank = int(np.where(base_models==model)[0])
top1_d = results[csv_file]['top1'][rank]-results['results-imagenet.csv']['top1'][base_rank]
top5_d = results[csv_file]['top5'][rank]-results['results-imagenet.csv']['top5'][base_rank]
# rank_diff
if rank == base_rank: rank_diff[rank] = f'='
elif rank > base_rank: rank_diff[rank] = f'-{rank-base_rank}'
else: rank_diff[rank] = f'+{base_rank-rank}'
# top1_diff
if top1_d >= .0: top1_diff[rank] = f'+{top1_d:.3f}'
else : top1_diff[rank] = f'-{abs(top1_d):.3f}'
# top5_diff
if top5_d >= .0: top5_diff[rank] = f'+{top5_d:.3f}'
else : top5_diff[rank] = f'-{abs(top5_d):.3f}'
else:
rank_diff[rank] = 'X'
top1_diff[rank] = 'X'
top5_diff[rank] = 'X'
results[csv_file]['rank_diff'] = rank_diff
results[csv_file]['top1_diff'] = top1_diff
results[csv_file]['top5_diff'] = top5_diff
results[csv_file]['param_count'] = results[csv_file]['param_count'].map('{:,.2f}'.format)
results[csv_file].to_csv(csv_file, index=False, float_format='%.3f')
for csv_file in results:
if csv_file != 'results-imagenet.csv': diff(csv_file)

@ -1,239 +1,239 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
tf_efficientnet_l2_ns_475,62.3867,37.6133,87.1067,12.8933,480.31,475,0.936,bicubic
tf_efficientnet_l2_ns,62.0267,37.9733,87.96,12.04,480.31,800,0.96,bicubic
tf_efficientnet_b7_ns,45.72,54.28,74.2,25.8,66.35,600,0.949,bicubic
ig_resnext101_32x48d,41.5733,58.4267,66.6133,33.3867,828.41,224,0.875,bilinear
tf_efficientnet_b6_ns,40.4267,59.5733,68.84,31.16,43.04,528,0.942,bicubic
ig_resnext101_32x32d,39.4133,60.5867,63.76,36.24,468.53,224,0.875,bilinear
tf_efficientnet_b5_ns,39.0133,60.9867,68.04,31.96,30.39,456,0.934,bicubic
ig_resnext101_32x16d,36.0533,63.9467,59.04,40.96,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,32.0667,67.9333,59.4,40.6,88.79,224,0.875,bilinear
tf_efficientnet_b4_ns,30.8,69.2,59.44,40.56,19.34,380,0.922,bicubic
tf_efficientnet_b8_ap,29.6,70.4,56.9333,43.0667,87.41,672,0.954,bicubic
tf_efficientnet_b8,29.3733,70.6267,57.0667,42.9333,87.41,672,0.954,bicubic
ig_resnext101_32x8d,28.7067,71.2933,52.32,47.68,88.79,224,0.875,bilinear
swsl_resnext101_32x16d,27.9467,72.0533,52.32,47.68,194.03,224,0.875,bilinear
tf_efficientnet_b7_ap,27.8133,72.1867,54.7733,45.2267,66.35,600,0.949,bicubic
resnest269e,27.6133,72.3867,53.1067,46.8933,110.93,416,0.875,bilinear
tresnet_xl_448,26.88,73.12,51.0933,48.9067,78.44,448,0.875,bilinear
resnest200e,26.4267,73.5733,51.9333,48.0667,70.2,320,0.875,bilinear
swsl_resnext101_32x4d,25.3467,74.6533,49.6267,50.3733,44.18,224,0.875,bilinear
tf_efficientnet_b7,25.2533,74.7467,51.6667,48.3333,66.35,600,0.949,bicubic
tresnet_l_448,24.5733,75.4267,48.6,51.4,55.99,448,0.875,bilinear
tf_efficientnet_b6_ap,24.3467,75.6533,50.4267,49.5733,43.04,528,0.942,bicubic
tf_efficientnet_b6,20.3733,79.6267,45.4933,54.5067,43.04,528,0.942,bicubic
tresnet_m_448,19.68,80.32,42.76,57.24,31.39,448,0.875,bilinear
tf_efficientnet_b5_ap,19.4667,80.5333,44.72,55.28,30.39,456,0.934,bicubic
tf_efficientnet_b3_ns,19.4133,80.5867,44.6267,55.3733,12.23,300,0.904,bicubic
swsl_resnext50_32x4d,18.0667,81.9333,41.8667,58.1333,25.03,224,0.875,bilinear
ssl_resnext101_32x16d,17.2133,82.7867,39.9467,60.0533,194.03,224,0.875,bilinear
tf_efficientnet_b5,17.0667,82.9333,41.9067,58.0933,30.39,456,0.934,bicubic
resnest101e,16.4933,83.5067,40.7467,59.2533,48.28,256,0.875,bilinear
swsl_resnet50,15.9867,84.0133,38.8533,61.1467,25.56,224,0.875,bilinear
ssl_resnext101_32x8d,15.12,84.88,37.72,62.28,88.79,224,0.875,bilinear
tf_efficientnet_b4_ap,13.68,86.32,35.92,64.08,19.34,380,0.922,bicubic
ecaresnet101d,13.3067,86.6933,35.5333,64.4667,44.57,224,0.875,bicubic
tf_efficientnet_b4,13.3067,86.6933,35.52,64.48,19.34,380,0.922,bicubic
pnasnet5large,13.08,86.92,32.2133,67.7867,86.06,331,0.875,bicubic
nasnetalarge,12.5733,87.4267,33.4133,66.5867,88.75,331,0.875,bicubic
ssl_resnext101_32x4d,12.12,87.88,31.8933,68.1067,44.18,224,0.875,bilinear
tf_efficientnet_b2_ns,11.7867,88.2133,32.96,67.04,9.11,260,0.89,bicubic
gluon_senet154,9.9067,90.0933,26.4533,73.5467,115.09,224,0.875,bicubic
resnest50d_4s2x40d,9.7867,90.2133,29.1467,70.8533,30.42,224,0.875,bicubic
ssl_resnext50_32x4d,9.6667,90.3333,28.4267,71.5733,25.03,224,0.875,bilinear
senet154,9.4533,90.5467,26.44,73.56,115.09,224,0.875,bilinear
tresnet_xl,9.3067,90.6933,28.4133,71.5867,78.44,224,0.875,bilinear
efficientnet_b3a,9.2667,90.7333,28.4267,71.5733,12.23,320,1.0,bicubic
efficientnet_b3,8.9467,91.0533,28.2133,71.7867,12.23,300,0.904,bicubic
inception_v4,8.92,91.08,24.7067,75.2933,42.68,299,0.875,bicubic
gluon_seresnext101_64x4d,8.8667,91.1333,27.32,72.68,88.23,224,0.875,bicubic
tf_efficientnet_b1_ns,8.6133,91.3867,27.28,72.72,7.79,240,0.882,bicubic
resnest50d_1s4x24d,8.52,91.48,26.7867,73.2133,25.68,224,0.875,bicubic
ecaresnet50d,8.5067,91.4933,26.2667,73.7333,25.58,224,0.875,bicubic
gluon_xception65,8.4667,91.5333,25.1333,74.8667,39.92,299,0.875,bicubic
gluon_resnet152_v1d,8.4133,91.5867,23.4533,76.5467,60.21,224,0.875,bicubic
inception_resnet_v2,8.16,91.84,23.5333,76.4667,55.84,299,0.8975,bicubic
tf_efficientnet_b3_ap,8.1333,91.8667,26.28,73.72,12.23,300,0.904,bicubic
gluon_seresnext101_32x4d,8.04,91.96,24.7333,75.2667,48.96,224,0.875,bicubic
tf_efficientnet_b3,8.0133,91.9867,25.4667,74.5333,12.23,300,0.904,bicubic
ens_adv_inception_resnet_v2,7.9867,92.0133,23.8267,76.1733,55.84,299,0.8975,bicubic
tf_efficientnet_lite4,7.9333,92.0667,25.56,74.44,13.01,380,0.92,bilinear
tresnet_l,7.88,92.12,25.1867,74.8133,55.99,224,0.875,bilinear
gluon_resnet152_v1s,7.8667,92.1333,23.1733,76.8267,60.32,224,0.875,bicubic
resnest50d,7.7467,92.2533,25.2933,74.7067,27.48,224,0.875,bilinear
gluon_resnext101_64x4d,7.7067,92.2933,23.24,76.76,83.46,224,0.875,bicubic
skresnext50_32x4d,7.08,92.92,23.0267,76.9733,27.48,224,0.875,bicubic
ssl_resnet50,7.0,93.0,23.92,76.08,25.56,224,0.875,bilinear
regnety_320,6.92,93.08,23.04,76.96,145.05,224,0.875,bicubic
ecaresnet101d_pruned,6.8,93.2,24.2,75.8,24.88,224,0.875,bicubic
ecaresnetlight,6.76,93.24,22.56,77.44,30.16,224,0.875,bicubic
efficientnet_b2a,6.76,93.24,23.4933,76.5067,9.11,288,1.0,bicubic
seresnext101_32x4d,6.4133,93.5867,21.52,78.48,48.96,224,0.875,bilinear
efficientnet_b2,6.0933,93.9067,21.9333,78.0667,9.11,260,0.875,bicubic
gluon_resnext101_32x4d,6.04,93.96,21.1333,78.8667,44.18,224,0.875,bicubic
regnetx_320,5.9867,94.0133,19.88,80.12,107.81,224,0.875,bicubic
ese_vovnet39b,5.9733,94.0267,21.2933,78.7067,24.57,224,0.875,bicubic
gluon_resnet101_v1d,5.92,94.08,19.9467,80.0533,44.57,224,0.875,bicubic
gluon_seresnext50_32x4d,5.7867,94.2133,21.4267,78.5733,27.56,224,0.875,bicubic
efficientnet_b3_pruned,5.7333,94.2667,21.36,78.64,9.86,300,0.904,bicubic
regnety_160,5.64,94.36,19.3467,80.6533,83.59,224,0.875,bicubic
gluon_inception_v3,5.5067,94.4933,19.9467,80.0533,23.83,299,0.875,bicubic
mixnet_xl,5.48,94.52,21.0933,78.9067,11.9,224,0.875,bicubic
tresnet_m,5.44,94.56,19.96,80.04,31.39,224,0.875,bilinear
regnety_120,5.4133,94.5867,19.8533,80.1467,51.82,224,0.875,bicubic
gluon_resnet101_v1s,5.28,94.72,19.5467,80.4533,44.67,224,0.875,bicubic
hrnet_w64,5.1333,94.8667,19.4533,80.5467,128.06,224,0.875,bilinear
regnety_080,5.0,95.0,18.6,81.4,39.18,224,0.875,bicubic
efficientnet_b2_pruned,4.9467,95.0533,19.3467,80.6533,8.31,260,0.89,bicubic
dpn107,4.88,95.12,17.6133,82.3867,86.92,224,0.875,bicubic
gluon_resnet152_v1c,4.8667,95.1333,17.7733,82.2267,60.21,224,0.875,bicubic
adv_inception_v3,4.7467,95.2533,17.5467,82.4533,23.83,299,0.875,bicubic
dla102x2,4.7467,95.2533,18.96,81.04,41.75,224,0.875,bilinear
tf_inception_v3,4.7467,95.2533,17.7467,82.2533,23.83,299,0.875,bicubic
hrnet_w48,4.72,95.28,18.44,81.56,77.47,224,0.875,bilinear
dpn131,4.64,95.36,16.8667,83.1333,79.25,224,0.875,bicubic
gluon_resnet152_v1b,4.5867,95.4133,16.5333,83.4667,60.19,224,0.875,bicubic
ecaresnet50d_pruned,4.5467,95.4533,18.5467,81.4533,19.94,224,0.875,bicubic
dpn92,4.4933,95.5067,18.2,81.8,37.67,224,0.875,bicubic
hrnet_w44,4.4933,95.5067,17.3467,82.6533,67.06,224,0.875,bilinear
regnetx_160,4.3733,95.6267,17.0933,82.9067,54.28,224,0.875,bicubic
resnext50d_32x4d,4.3467,95.6533,17.7733,82.2267,25.05,224,0.875,bicubic
xception,4.3467,95.6533,16.76,83.24,22.86,299,0.8975,bicubic
seresnext50_32x4d,4.28,95.72,17.8133,82.1867,27.56,224,0.875,bilinear
resnext50_32x4d,4.2533,95.7467,18.3867,81.6133,25.03,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,4.24,95.76,15.9467,84.0533,39.72,240,0.882,bicubic
regnety_064,4.2267,95.7733,17.1867,82.8133,30.58,224,0.875,bicubic
tf_efficientnet_el,4.2267,95.7733,18.1733,81.8267,10.59,300,0.904,bicubic
inception_v3,4.1867,95.8133,16.2933,83.7067,23.83,299,0.875,bicubic
tf_efficientnet_b2_ap,4.1733,95.8267,18.32,81.68,9.11,260,0.89,bicubic
seresnet152,4.1467,95.8533,15.8933,84.1067,66.82,224,0.875,bilinear
resnext101_32x8d,4.1333,95.8667,16.9867,83.0133,88.79,224,0.875,bilinear
tf_efficientnet_b0_ns,4.1333,95.8667,17.68,82.32,5.29,224,0.875,bicubic
dpn98,4.08,95.92,15.9467,84.0533,61.57,224,0.875,bicubic
res2net101_26w_4s,4.0,96.0,14.8267,85.1733,45.21,224,0.875,bilinear
efficientnet_b1,3.9733,96.0267,15.76,84.24,7.79,240,0.875,bicubic
tf_efficientnet_lite3,3.9333,96.0667,16.52,83.48,8.2,300,0.904,bilinear
tf_efficientnet_b2,3.7733,96.2267,16.6133,83.3867,9.11,260,0.89,bicubic
regnety_040,3.7467,96.2533,16.4,83.6,20.65,224,0.875,bicubic
hrnet_w30,3.68,96.32,15.5733,84.4267,37.71,224,0.875,bilinear
hrnet_w32,3.6533,96.3467,14.7867,85.2133,41.23,224,0.875,bilinear
hrnet_w40,3.6533,96.3467,15.44,84.56,57.56,224,0.875,bilinear
regnetx_120,3.6267,96.3733,15.9733,84.0267,46.11,224,0.875,bicubic
seresnext26t_32x4d,3.6133,96.3867,15.8933,84.1067,16.82,224,0.875,bicubic
tf_efficientnet_b1_ap,3.5467,96.4533,15.0667,84.9333,7.79,240,0.882,bicubic
seresnext26tn_32x4d,3.5067,96.4933,15.76,84.24,16.81,224,0.875,bicubic
resnest26d,3.4933,96.5067,15.6667,84.3333,17.07,224,0.875,bilinear
dla169,3.4667,96.5333,15.3333,84.6667,53.99,224,0.875,bilinear
gluon_resnext50_32x4d,3.4533,96.5467,16.12,83.88,25.03,224,0.875,bicubic
mixnet_l,3.44,96.56,15.3067,84.6933,7.33,224,0.875,bicubic
seresnext26d_32x4d,3.4,96.6,16.16,83.84,16.81,224,0.875,bicubic
res2net50_26w_8s,3.3333,96.6667,14.04,85.96,48.4,224,0.875,bilinear
resnetblur50,3.3333,96.6667,15.5867,84.4133,25.56,224,0.875,bicubic
dla102x,3.3067,96.6933,15.12,84.88,26.77,224,0.875,bilinear
gluon_resnet101_v1c,3.3067,96.6933,14.12,85.88,44.57,224,0.875,bicubic
seresnet101,3.2533,96.7467,15.4533,84.5467,49.33,224,0.875,bilinear
densenetblur121d,3.0667,96.9333,14.28,85.72,8.0,224,0.875,bicubic
dla60_res2next,3.04,96.96,14.4533,85.5467,17.33,224,0.875,bilinear
regnety_032,3.0267,96.9733,14.24,85.76,19.44,224,0.875,bicubic
gluon_resnet50_v1d,3.0133,96.9867,14.6267,85.3733,25.58,224,0.875,bicubic
wide_resnet101_2,2.96,97.04,13.9467,86.0533,126.89,224,0.875,bilinear
efficientnet_b1_pruned,2.9333,97.0667,14.4133,85.5867,6.33,240,0.882,bicubic
gluon_resnet50_v1s,2.92,97.08,13.12,86.88,25.68,224,0.875,bicubic
tf_efficientnet_b1,2.8667,97.1333,13.5067,86.4933,7.79,240,0.882,bicubic
res2net50_26w_6s,2.84,97.16,12.6,87.4,37.05,224,0.875,bilinear
efficientnet_b0,2.8133,97.1867,13.9067,86.0933,5.29,224,0.875,bicubic
tf_mixnet_l,2.8133,97.1867,13.04,86.96,7.33,224,0.875,bicubic
regnetx_064,2.7867,97.2133,13.88,86.12,26.21,224,0.875,bicubic
dpn68b,2.7067,97.2933,12.64,87.36,12.61,224,0.875,bicubic
selecsls60b,2.6933,97.3067,13.1733,86.8267,32.77,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,2.68,97.32,12.7733,87.2267,24.01,224,0.875,bicubic
dla60_res2net,2.64,97.36,14.2,85.8,21.15,224,0.875,bilinear
gluon_resnet101_v1b,2.6267,97.3733,13.5733,86.4267,44.55,224,0.875,bicubic
dla60x,2.6133,97.3867,13.3333,86.6667,17.65,224,0.875,bilinear
mixnet_m,2.5467,97.4533,12.4267,87.5733,5.01,224,0.875,bicubic
skresnet34,2.52,97.48,12.7733,87.2267,22.28,224,0.875,bicubic
efficientnet_es,2.3733,97.6267,13.88,86.12,5.44,224,0.875,bicubic
resnet152,2.36,97.64,12.2,87.8,60.19,224,0.875,bilinear
regnetx_080,2.3467,97.6533,12.6933,87.3067,39.57,224,0.875,bicubic
swsl_resnet18,2.3333,97.6667,11.2133,88.7867,11.69,224,0.875,bilinear
wide_resnet50_2,2.32,97.68,11.8,88.2,68.88,224,0.875,bilinear
seresnext26_32x4d,2.2933,97.7067,12.44,87.56,16.79,224,0.875,bicubic
hrnet_w18,2.2667,97.7333,11.8533,88.1467,21.3,224,0.875,bilinear
dla102,2.2533,97.7467,12.12,87.88,33.73,224,0.875,bilinear
resnet50,2.2267,97.7733,11.3333,88.6667,25.56,224,0.875,bicubic
regnety_016,2.1733,97.8267,11.44,88.56,11.2,224,0.875,bicubic
regnetx_040,2.16,97.84,11.8,88.2,22.12,224,0.875,bicubic
resnest14d,2.1467,97.8533,10.4,89.6,10.61,224,0.875,bilinear
selecsls60,2.08,97.92,12.84,87.16,30.67,224,0.875,bicubic
tf_efficientnet_cc_b0_4e,2.08,97.92,10.9733,89.0267,13.31,224,0.875,bicubic
res2next50,2.0667,97.9333,11.4533,88.5467,24.67,224,0.875,bilinear
seresnet50,2.0667,97.9333,12.2667,87.7333,28.09,224,0.875,bilinear
densenet161,1.9733,98.0267,10.5867,89.4133,28.68,224,0.875,bicubic
tf_efficientnet_b0_ap,1.96,98.04,10.8,89.2,5.29,224,0.875,bicubic
regnetx_032,1.92,98.08,10.9467,89.0533,15.3,224,0.875,bicubic
tf_efficientnet_em,1.8133,98.1867,11.6267,88.3733,6.9,240,0.882,bicubic
tf_mixnet_m,1.8133,98.1867,10.5467,89.4533,5.01,224,0.875,bicubic
tf_efficientnet_lite2,1.8,98.2,11.1467,88.8533,6.09,260,0.89,bicubic
res2net50_14w_8s,1.7867,98.2133,10.3467,89.6533,25.06,224,0.875,bilinear
res2net50_26w_4s,1.7733,98.2267,10.44,89.56,25.7,224,0.875,bilinear
mobilenetv3_large_100,1.76,98.24,10.2933,89.7067,5.48,224,0.875,bicubic
densenet121,1.7333,98.2667,10.8533,89.1467,7.98,224,0.875,bicubic
tf_efficientnet_b0,1.6933,98.3067,9.7333,90.2667,5.29,224,0.875,bicubic
tv_resnext50_32x4d,1.68,98.32,10.6,89.4,25.03,224,0.875,bilinear
mobilenetv3_rw,1.6667,98.3333,10.7333,89.2667,5.48,224,0.875,bicubic
resnet101,1.6667,98.3333,9.8133,90.1867,44.55,224,0.875,bilinear
mobilenetv2_120d,1.64,98.36,10.4533,89.5467,5.83,224,0.875,bicubic
mixnet_s,1.5867,98.4133,10.2533,89.7467,4.13,224,0.875,bicubic
densenet201,1.5467,98.4533,9.6267,90.3733,20.01,224,0.875,bicubic
gluon_resnet50_v1c,1.5467,98.4533,10.6133,89.3867,25.58,224,0.875,bicubic
semnasnet_100,1.5467,98.4533,9.32,90.68,3.89,224,0.875,bicubic
selecsls42b,1.4667,98.5333,10.44,89.56,32.46,224,0.875,bicubic
tf_efficientnet_lite1,1.4533,98.5467,9.7067,90.2933,5.42,240,0.882,bicubic
regnety_008,1.4267,98.5733,8.9467,91.0533,6.26,224,0.875,bicubic
ssl_resnet18,1.3867,98.6133,8.16,91.84,11.69,224,0.875,bilinear
dla60,1.3467,98.6533,9.4667,90.5333,22.33,224,0.875,bilinear
dpn68,1.3467,98.6533,8.8133,91.1867,12.61,224,0.875,bicubic
res2net50_48w_2s,1.3067,98.6933,8.92,91.08,25.29,224,0.875,bilinear
tf_mixnet_s,1.28,98.72,8.7467,91.2533,4.13,224,0.875,bicubic
mobilenetv2_140,1.2533,98.7467,9.1067,90.8933,6.11,224,0.875,bicubic
fbnetc_100,1.2267,98.7733,8.7467,91.2533,5.57,224,0.875,bilinear
resnet26d,1.2267,98.7733,9.28,90.72,16.01,224,0.875,bicubic
densenet169,1.1867,98.8133,8.32,91.68,14.15,224,0.875,bicubic
tf_mobilenetv3_large_100,1.1867,98.8133,7.9467,92.0533,5.48,224,0.875,bilinear
gluon_resnet50_v1b,1.16,98.84,9.0267,90.9733,25.56,224,0.875,bicubic
seresnet34,1.12,98.88,7.4,92.6,21.96,224,0.875,bilinear
tf_efficientnet_es,1.12,98.88,8.6,91.4,5.44,224,0.875,bicubic
spnasnet_100,1.1067,98.8933,8.2533,91.7467,4.42,224,0.875,bilinear
tf_efficientnet_lite0,1.1067,98.8933,7.4933,92.5067,4.65,224,0.875,bicubic
regnetx_016,1.0933,98.9067,8.6267,91.3733,9.19,224,0.875,bicubic
dla34,1.08,98.92,7.6933,92.3067,15.78,224,0.875,bilinear
regnety_006,1.0533,98.9467,8.4,91.6,6.06,224,0.875,bicubic
regnety_004,1.0133,98.9867,7.3333,92.6667,4.34,224,0.875,bicubic
resnet34,0.9867,99.0133,7.5333,92.4667,21.8,224,0.875,bilinear
mobilenetv2_110d,0.9333,99.0667,8.1067,91.8933,4.52,224,0.875,bicubic
gluon_resnet34_v1b,0.8933,99.1067,6.6,93.4,21.8,224,0.875,bicubic
hrnet_w18_small_v2,0.8933,99.1067,7.3867,92.6133,15.6,224,0.875,bilinear
regnetx_008,0.8933,99.1067,6.9067,93.0933,7.26,224,0.875,bicubic
skresnet18,0.88,99.12,7.3867,92.6133,11.96,224,0.875,bicubic
mnasnet_100,0.8667,99.1333,7.8667,92.1333,4.38,224,0.875,bicubic
tf_mobilenetv3_large_075,0.8667,99.1333,6.72,93.28,3.99,224,0.875,bilinear
regnetx_006,0.76,99.24,6.4933,93.5067,6.2,224,0.875,bicubic
tf_mobilenetv3_small_100,0.7467,99.2533,4.6667,95.3333,2.54,224,0.875,bilinear
seresnet18,0.72,99.28,6.0267,93.9733,11.78,224,0.875,bicubic
regnetx_004,0.6933,99.3067,5.5067,94.4933,5.16,224,0.875,bicubic
tv_densenet121,0.68,99.32,6.9067,93.0933,7.98,224,0.875,bicubic
regnety_002,0.6667,99.3333,5.5333,94.4667,3.16,224,0.875,bicubic
tf_mobilenetv3_small_075,0.6267,99.3733,4.1733,95.8267,2.04,224,0.875,bilinear
resnet26,0.6,99.4,6.88,93.12,16.0,224,0.875,bicubic
tv_resnet34,0.6,99.4,5.52,94.48,21.8,224,0.875,bilinear
mobilenetv2_100,0.5333,99.4667,6.1867,93.8133,3.5,224,0.875,bicubic
dla46_c,0.52,99.48,4.1867,95.8133,1.31,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,0.48,99.52,4.88,95.12,3.92,224,0.875,bilinear
dla60x_c,0.4667,99.5333,5.2133,94.7867,1.34,224,0.875,bilinear
hrnet_w18_small,0.4533,99.5467,4.84,95.16,13.19,224,0.875,bilinear
dla46x_c,0.4133,99.5867,4.44,95.56,1.08,224,0.875,bilinear
gluon_resnet18_v1b,0.3867,99.6133,4.7867,95.2133,11.69,224,0.875,bicubic
tf_mobilenetv3_small_minimal_100,0.36,99.64,2.8667,97.1333,2.04,224,0.875,bilinear
resnet18,0.2933,99.7067,4.04,95.96,11.69,224,0.875,bilinear
regnetx_002,0.2267,99.7733,3.9867,96.0133,2.68,224,0.875,bicubic
tv_resnet50,0.0,100.0,2.8933,97.1067,25.56,224,0.875,bilinear
model,rank_diff,top1,top1_diff,top1_err,top5,top5_diff,top5_err,param_count,img_size,cropt_pct,interpolation
tf_efficientnet_l2_ns_475,+1,62.387,-25.847,37.613,87.107,-11.439,12.893,480.31,475,0.936,bicubic
tf_efficientnet_l2_ns,-1,62.027,-26.325,37.973,87.960,-10.688,12.040,480.31,800,0.960,bicubic
tf_efficientnet_b7_ns,=,45.720,-41.118,54.280,74.200,-23.894,25.800,66.35,600,0.949,bicubic
ig_resnext101_32x48d,+2,41.573,-43.869,58.427,66.613,-30.959,33.387,828.41,224,0.875,bilinear
tf_efficientnet_b6_ns,-1,40.427,-46.035,59.573,68.840,-29.044,31.160,43.04,528,0.942,bicubic
ig_resnext101_32x32d,+5,39.413,-45.679,60.587,63.760,-33.676,36.240,468.53,224,0.875,bilinear
tf_efficientnet_b5_ns,-2,39.013,-47.067,60.987,68.040,-29.714,31.960,30.39,456,0.934,bicubic
ig_resnext101_32x16d,+9,36.053,-48.123,63.947,59.040,-38.156,40.960,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,+5,32.067,-52.227,67.933,59.400,-37.774,40.600,88.79,224,0.875,bilinear
tf_efficientnet_b4_ns,-1,30.800,-54.358,69.200,59.440,-38.028,40.560,19.34,380,0.922,bicubic
tf_efficientnet_b8_ap,-3,29.600,-55.768,70.400,56.933,-40.361,43.067,87.41,672,0.954,bicubic
tf_efficientnet_b8,-5,29.373,-55.997,70.627,57.067,-40.325,42.933,87.41,672,0.954,bicubic
ig_resnext101_32x8d,+16,28.707,-53.981,71.293,52.320,-44.312,47.680,88.79,224,0.875,bilinear
swsl_resnext101_32x16d,+8,27.947,-55.391,72.053,52.320,-44.532,47.680,194.03,224,0.875,bilinear
tf_efficientnet_b7_ap,-5,27.813,-57.305,72.187,54.773,-42.479,45.227,66.35,600,0.949,bicubic
resnest269e,=,27.613,-56.573,72.387,53.107,-43.815,46.893,110.93,416,0.875,bilinear
tresnet_xl_448,+8,26.880,-56.168,73.120,51.093,-45.081,48.907,78.44,448,0.875,bilinear
resnest200e,+2,26.427,-57.407,73.573,51.933,-44.905,48.067,70.20,320,0.875,bilinear
swsl_resnext101_32x4d,+5,25.347,-57.887,74.653,49.627,-47.129,50.373,44.18,224,0.875,bilinear
tf_efficientnet_b7,-8,25.253,-59.679,74.747,51.667,-45.541,48.333,66.35,600,0.949,bicubic
tresnet_l_448,+11,24.573,-57.695,75.427,48.600,-47.378,51.400,55.99,448,0.875,bilinear
tf_efficientnet_b6_ap,-9,24.347,-60.439,75.653,50.427,-46.711,49.573,43.04,528,0.942,bicubic
tf_efficientnet_b6,-5,20.373,-63.739,79.627,45.493,-51.391,54.507,43.04,528,0.942,bicubic
tresnet_m_448,+15,19.680,-62.032,80.320,42.760,-52.810,57.240,31.39,448,0.875,bilinear
tf_efficientnet_b5_ap,-10,19.467,-64.787,80.533,44.720,-52.256,55.280,30.39,456,0.934,bicubic
tf_efficientnet_b3_ns,-7,19.413,-64.641,80.587,44.627,-52.285,55.373,12.23,300,0.904,bicubic
swsl_resnext50_32x4d,+6,18.067,-64.113,81.933,41.867,-54.361,58.133,25.03,224,0.875,bilinear
ssl_resnext101_32x16d,+9,17.213,-64.623,82.787,39.947,-56.147,60.053,194.03,224,0.875,bilinear
tf_efficientnet_b5,-8,17.067,-66.749,82.933,41.907,-54.843,58.093,30.39,456,0.934,bicubic
resnest101e,-3,16.493,-66.397,83.507,40.747,-55.577,59.253,48.28,256,0.875,bilinear
swsl_resnet50,+17,15.987,-65.193,84.013,38.853,-57.133,61.147,25.56,224,0.875,bilinear
ssl_resnext101_32x8d,+9,15.120,-66.506,84.880,37.720,-58.318,62.280,88.79,224,0.875,bilinear
tf_efficientnet_b4_ap,-10,13.680,-69.568,86.320,35.920,-60.468,64.080,19.34,380,0.922,bicubic
ecaresnet101d,=,13.307,-68.859,86.693,35.533,-60.519,64.467,44.57,224,0.875,bicubic
tf_efficientnet_b4,-9,13.307,-69.709,86.693,35.520,-60.778,64.480,19.34,380,0.922,bicubic
pnasnet5large,-8,13.080,-69.660,86.920,32.213,-63.827,67.787,86.06,331,0.875,bicubic
nasnetalarge,-7,12.573,-69.985,87.427,33.413,-62.623,66.587,88.75,331,0.875,bicubic
ssl_resnext101_32x4d,+15,12.120,-68.808,87.880,31.893,-63.835,68.107,44.18,224,0.875,bilinear
tf_efficientnet_b2_ns,-8,11.787,-70.593,88.213,32.960,-63.292,67.040,9.11,260,0.890,bicubic
gluon_senet154,+7,9.907,-71.317,90.093,26.453,-68.903,73.547,115.09,224,0.875,bicubic
resnest50d_4s2x40d,+8,9.787,-71.327,90.213,29.147,-66.421,70.853,30.42,224,0.875,bicubic
ssl_resnext50_32x4d,+30,9.667,-70.661,90.333,28.427,-66.977,71.573,25.03,224,0.875,bilinear
senet154,+3,9.453,-71.851,90.547,26.440,-69.058,73.560,115.09,224,0.875,bilinear
tresnet_xl,-9,9.307,-72.763,90.693,28.413,-67.515,71.587,78.44,224,0.875,bilinear
efficientnet_b3a,-9,9.267,-72.607,90.733,28.427,-67.413,71.573,12.23,320,1.000,bicubic
efficientnet_b3,-3,8.947,-72.551,91.053,28.213,-67.505,71.787,12.23,300,0.904,bicubic
inception_v4,+32,8.920,-71.236,91.080,24.707,-70.267,75.293,42.68,299,0.875,bicubic
gluon_seresnext101_64x4d,+7,8.867,-72.023,91.133,27.320,-67.984,72.680,88.23,224,0.875,bicubic
tf_efficientnet_b1_ns,-4,8.613,-72.773,91.387,27.280,-68.458,72.720,7.79,240,0.882,bicubic
resnest50d_1s4x24d,+1,8.520,-72.470,91.480,26.787,-68.535,73.213,25.68,224,0.875,bicubic
ecaresnet50d,+10,8.507,-72.097,91.493,26.267,-69.055,73.733,25.58,224,0.875,bicubic
gluon_xception65,+45,8.467,-71.137,91.533,25.133,-69.615,74.867,39.92,299,0.875,bicubic
gluon_resnet152_v1d,+11,8.413,-72.057,91.587,23.453,-71.753,76.547,60.21,224,0.875,bicubic
inception_resnet_v2,+11,8.160,-72.300,91.840,23.533,-71.777,76.467,55.84,299,0.897,bicubic
tf_efficientnet_b3_ap,-17,8.133,-73.695,91.867,26.280,-69.344,73.720,12.23,300,0.904,bicubic
gluon_seresnext101_32x4d,-2,8.040,-72.862,91.960,24.733,-70.561,75.267,48.96,224,0.875,bicubic
tf_efficientnet_b3,-17,8.013,-73.627,91.987,25.467,-70.255,74.533,12.23,300,0.904,bicubic
ens_adv_inception_resnet_v2,+25,7.987,-71.989,92.013,23.827,-71.119,76.173,55.84,299,0.897,bicubic
tf_efficientnet_lite4,-17,7.933,-73.595,92.067,25.560,-70.108,74.440,13.01,380,0.920,bilinear
tresnet_l,-16,7.880,-73.608,92.120,25.187,-70.441,74.813,55.99,224,0.875,bilinear
gluon_resnet152_v1s,-11,7.867,-73.145,92.133,23.173,-72.243,76.827,60.32,224,0.875,bicubic
resnest50d,-10,7.747,-73.211,92.253,25.293,-70.089,74.707,27.48,224,0.875,bilinear
gluon_resnext101_64x4d,-1,7.707,-72.895,92.293,23.240,-71.754,76.760,83.46,224,0.875,bicubic
skresnext50_32x4d,+16,7.080,-73.070,92.920,23.027,-71.617,76.973,27.48,224,0.875,bicubic
ssl_resnet50,+45,7.000,-72.228,93.000,23.920,-70.912,76.080,25.56,224,0.875,bilinear
regnety_320,-9,6.920,-73.894,93.080,23.040,-72.200,76.960,145.05,224,0.875,bicubic
ecaresnet101d_pruned,-9,6.800,-74.008,93.200,24.200,-71.428,75.800,24.88,224,0.875,bicubic
ecaresnetlight,-2,6.760,-73.694,93.240,22.560,-72.696,77.440,30.16,224,0.875,bicubic
efficientnet_b2a,-9,6.760,-73.848,93.240,23.493,-71.817,76.507,9.11,288,1.000,bicubic
seresnext101_32x4d,+7,6.413,-73.823,93.587,21.520,-73.508,78.480,48.96,224,0.875,bilinear
efficientnet_b2,-2,6.093,-74.309,93.907,21.933,-73.143,78.067,9.11,260,0.875,bicubic
gluon_resnext101_32x4d,-1,6.040,-74.294,93.960,21.133,-73.793,78.867,44.18,224,0.875,bicubic
regnetx_320,+3,5.987,-74.259,94.013,19.880,-75.142,80.120,107.81,224,0.875,bicubic
ese_vovnet39b,+29,5.973,-73.347,94.027,21.293,-73.417,78.707,24.57,224,0.875,bicubic
gluon_resnet101_v1d,-7,5.920,-74.504,94.080,19.947,-75.073,80.053,44.57,224,0.875,bicubic
gluon_seresnext50_32x4d,+10,5.787,-74.125,94.213,21.427,-73.391,78.573,27.56,224,0.875,bicubic
efficientnet_b3_pruned,-21,5.733,-75.123,94.267,21.360,-73.880,78.640,9.86,300,0.904,bicubic
regnety_160,-3,5.640,-74.660,94.360,19.347,-75.615,80.653,83.59,224,0.875,bicubic
gluon_inception_v3,+47,5.507,-73.297,94.493,19.947,-74.433,80.053,23.83,299,0.875,bicubic
mixnet_xl,-17,5.480,-74.998,94.520,21.093,-73.839,78.907,11.90,224,0.875,bicubic
tresnet_m,-22,5.440,-75.356,94.560,19.960,-74.896,80.040,31.39,224,0.875,bilinear
regnety_120,-12,5.413,-74.969,94.587,19.853,-75.275,80.147,51.82,224,0.875,bicubic
gluon_resnet101_v1s,-9,5.280,-75.020,94.720,19.547,-75.603,80.453,44.67,224,0.875,bicubic
hrnet_w64,+16,5.133,-74.339,94.867,19.453,-75.197,80.547,128.06,224,0.875,bilinear
regnety_080,+2,5.000,-74.868,95.000,18.600,-76.232,81.400,39.18,224,0.875,bicubic
efficientnet_b2_pruned,-2,4.947,-74.971,95.053,19.347,-75.501,80.653,8.31,260,0.890,bicubic
dpn107,-9,4.880,-75.284,95.120,17.613,-77.299,82.387,86.92,224,0.875,bicubic
gluon_resnet152_v1c,-3,4.867,-75.049,95.133,17.773,-77.069,82.227,60.21,224,0.875,bicubic
adv_inception_v3,+76,4.747,-72.833,95.253,17.547,-76.177,82.453,23.83,299,0.875,bicubic
dla102x2,+11,4.747,-74.705,95.253,18.960,-75.684,81.040,41.75,224,0.875,bilinear
tf_inception_v3,+68,4.747,-73.109,95.253,17.747,-75.897,82.253,23.83,299,0.875,bicubic
hrnet_w48,+13,4.720,-74.590,95.280,18.440,-76.078,81.560,77.47,224,0.875,bilinear
dpn131,-4,4.640,-75.188,95.360,16.867,-77.837,83.133,79.25,224,0.875,bicubic
gluon_resnet152_v1b,=,4.587,-75.105,95.413,16.533,-78.205,83.467,60.19,224,0.875,bicubic
ecaresnet50d_pruned,-3,4.547,-75.171,95.453,18.547,-76.343,81.453,19.94,224,0.875,bicubic
dpn92,-14,4.493,-75.523,95.507,18.200,-76.638,81.800,37.67,224,0.875,bicubic
hrnet_w44,+25,4.493,-74.401,95.507,17.347,-77.023,82.653,67.06,224,0.875,bilinear
regnetx_160,-10,4.373,-75.493,95.627,17.093,-77.735,82.907,54.28,224,0.875,bicubic
resnext50d_32x4d,-4,4.347,-75.327,95.653,17.773,-77.095,82.227,25.05,224,0.875,bicubic
xception,+18,4.347,-74.701,95.653,16.760,-77.632,83.240,22.86,299,0.897,bicubic
seresnext50_32x4d,+14,4.280,-74.796,95.720,17.813,-76.621,82.187,27.56,224,0.875,bilinear
resnext50_32x4d,-11,4.253,-75.509,95.747,18.387,-76.213,81.613,25.03,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,+4,4.240,-75.058,95.760,15.947,-78.417,84.053,39.72,240,0.882,bicubic
regnety_064,-11,4.227,-75.485,95.773,17.187,-77.587,82.813,30.58,224,0.875,bicubic
tf_efficientnet_el,-38,4.227,-76.221,95.773,18.173,-76.987,81.827,10.59,300,0.904,bicubic
inception_v3,+64,4.187,-73.249,95.813,16.293,-77.183,83.707,23.83,299,0.875,bicubic
tf_efficientnet_b2_ap,-34,4.173,-76.133,95.827,18.320,-76.708,81.680,9.11,260,0.890,bicubic
seresnet152,+24,4.147,-74.511,95.853,15.893,-78.481,84.107,66.82,224,0.875,bilinear
resnext101_32x8d,-5,4.133,-75.179,95.867,16.987,-77.539,83.013,88.79,224,0.875,bilinear
tf_efficientnet_b0_ns,+23,4.133,-74.519,95.867,17.680,-76.688,82.320,5.29,224,0.875,bicubic
dpn98,-15,4.080,-75.556,95.920,15.947,-78.647,84.053,61.57,224,0.875,bicubic
res2net101_26w_4s,+2,4.000,-75.196,96.000,14.827,-79.613,85.173,45.21,224,0.875,bilinear
efficientnet_b1,+17,3.973,-74.725,96.027,15.760,-78.392,84.240,7.79,240,0.875,bicubic
tf_efficientnet_lite3,-24,3.933,-75.879,96.067,16.520,-78.394,83.480,8.20,300,0.904,bilinear
tf_efficientnet_b2,-34,3.773,-76.317,96.227,16.613,-78.293,83.387,9.11,260,0.890,bicubic
regnety_040,-5,3.747,-75.475,96.253,16.400,-78.256,83.600,20.65,224,0.875,bicubic
hrnet_w30,+31,3.680,-74.516,96.320,15.573,-78.647,84.427,37.71,224,0.875,bilinear
hrnet_w32,+23,3.653,-74.795,96.347,14.787,-79.401,85.213,41.23,224,0.875,bilinear
hrnet_w40,+2,3.653,-75.281,96.347,15.440,-79.026,84.560,57.56,224,0.875,bilinear
regnetx_120,-22,3.627,-75.963,96.373,15.973,-78.767,84.027,46.11,224,0.875,bicubic
seresnext26t_32x4d,+34,3.613,-74.375,96.387,15.893,-77.813,84.107,16.82,224,0.875,bicubic
tf_efficientnet_b1_ap,-13,3.547,-75.731,96.453,15.067,-79.241,84.933,7.79,240,0.882,bicubic
seresnext26tn_32x4d,+31,3.507,-74.483,96.493,15.760,-77.988,84.240,16.81,224,0.875,bicubic
resnest26d,+13,3.493,-74.989,96.507,15.667,-78.623,84.333,17.07,224,0.875,bilinear
dla169,+4,3.467,-75.243,96.533,15.333,-79.005,84.667,53.99,224,0.875,bilinear
gluon_resnext50_32x4d,-24,3.453,-75.903,96.547,16.120,-78.304,83.880,25.03,224,0.875,bicubic
mixnet_l,-7,3.440,-75.536,96.560,15.307,-78.877,84.693,7.33,224,0.875,bicubic
seresnext26d_32x4d,+36,3.400,-74.204,96.600,16.160,-77.452,83.840,16.81,224,0.875,bicubic
res2net50_26w_8s,-17,3.333,-75.877,96.667,14.040,-80.322,85.960,48.40,224,0.875,bilinear
resnetblur50,-22,3.333,-75.957,96.667,15.587,-79.045,84.413,25.56,224,0.875,bicubic
dla102x,+4,3.307,-75.201,96.693,15.120,-79.114,84.880,26.77,224,0.875,bilinear
gluon_resnet101_v1c,-33,3.307,-76.237,96.693,14.120,-80.466,85.880,44.57,224,0.875,bicubic
seresnet101,+10,3.253,-75.143,96.747,15.453,-78.805,84.547,49.33,224,0.875,bilinear
densenetblur121d,+55,3.067,-73.509,96.933,14.280,-78.910,85.720,8.00,224,0.875,bicubic
dla60_res2next,+5,3.040,-75.408,96.960,14.453,-79.691,85.547,17.33,224,0.875,bilinear
regnety_032,-13,3.027,-75.843,96.973,14.240,-80.162,85.760,19.44,224,0.875,bicubic
gluon_resnet50_v1d,-21,3.013,-76.061,96.987,14.627,-79.849,85.373,25.58,224,0.875,bicubic
wide_resnet101_2,-14,2.960,-75.886,97.040,13.947,-80.337,86.053,126.89,224,0.875,bilinear
efficientnet_b1_pruned,+7,2.933,-75.309,97.067,14.413,-79.419,85.587,6.33,240,0.882,bicubic
gluon_resnet50_v1s,-12,2.920,-75.792,97.080,13.120,-81.122,86.880,25.68,224,0.875,bicubic
tf_efficientnet_b1,-16,2.867,-75.965,97.133,13.507,-80.689,86.493,7.79,240,0.882,bicubic
res2net50_26w_6s,-8,2.840,-75.734,97.160,12.600,-81.526,87.400,37.05,224,0.875,bilinear
efficientnet_b0,+18,2.813,-74.879,97.187,13.907,-79.625,86.093,5.29,224,0.875,bicubic
tf_mixnet_l,-17,2.813,-75.957,97.187,13.040,-80.964,86.960,7.33,224,0.875,bicubic
regnetx_064,-28,2.787,-76.279,97.213,13.880,-80.576,86.120,26.21,224,0.875,bicubic
dpn68b,+21,2.707,-74.807,97.293,12.640,-81.182,87.360,12.61,224,0.875,bicubic
selecsls60b,-5,2.693,-75.725,97.307,13.173,-80.993,86.827,32.77,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,+10,2.680,-75.228,97.320,12.773,-80.883,87.227,24.01,224,0.875,bicubic
dla60_res2net,-11,2.640,-75.832,97.360,14.200,-80.004,85.800,21.15,224,0.875,bilinear
gluon_resnet101_v1b,-44,2.627,-76.677,97.373,13.573,-80.951,86.427,44.55,224,0.875,bicubic
dla60x,-6,2.613,-75.629,97.387,13.333,-80.689,86.667,17.65,224,0.875,bilinear
mixnet_m,+25,2.547,-74.709,97.453,12.427,-80.991,87.573,5.01,224,0.875,bicubic
skresnet34,+31,2.520,-74.390,97.480,12.773,-80.543,87.227,22.28,224,0.875,bicubic
efficientnet_es,-3,2.373,-75.681,97.627,13.880,-80.050,86.120,5.44,224,0.875,bicubic
resnet152,-11,2.360,-75.952,97.640,12.200,-81.846,87.800,60.19,224,0.875,bilinear
regnetx_080,-43,2.347,-76.851,97.653,12.693,-81.865,87.307,39.57,224,0.875,bicubic
swsl_resnet18,+64,2.333,-70.953,97.667,11.213,-80.519,88.787,11.69,224,0.875,bilinear
wide_resnet50_2,-19,2.320,-76.148,97.680,11.800,-82.286,88.200,68.88,224,0.875,bilinear
seresnext26_32x4d,+20,2.293,-74.807,97.707,12.440,-80.870,87.560,16.79,224,0.875,bicubic
hrnet_w18,+26,2.267,-74.489,97.733,11.853,-81.589,88.147,21.30,224,0.875,bilinear
dla102,-9,2.253,-75.773,97.747,12.120,-81.830,87.880,33.73,224,0.875,bilinear
resnet50,-43,2.227,-76.805,97.773,11.333,-83.051,88.667,25.56,224,0.875,bicubic
regnety_016,-3,2.173,-75.679,97.827,11.440,-82.276,88.560,11.20,224,0.875,bicubic
regnetx_040,-28,2.160,-76.326,97.840,11.800,-82.442,88.200,22.12,224,0.875,bicubic
resnest14d,+36,2.147,-73.357,97.853,10.400,-82.114,89.600,10.61,224,0.875,bilinear
selecsls60,-10,2.080,-75.902,97.920,12.840,-80.992,87.160,30.67,224,0.875,bicubic
tf_efficientnet_cc_b0_4e,+6,2.080,-75.224,97.920,10.973,-82.359,89.027,13.31,224,0.875,bicubic
res2next50,-21,2.067,-76.175,97.933,11.453,-82.439,88.547,24.67,224,0.875,bilinear
seresnet50,-7,2.067,-75.569,97.933,12.267,-81.485,87.733,28.09,224,0.875,bilinear
densenet161,+2,1.973,-75.375,98.027,10.587,-83.061,89.413,28.68,224,0.875,bicubic
tf_efficientnet_b0_ap,+9,1.960,-75.124,98.040,10.800,-82.454,89.200,5.29,224,0.875,bicubic
regnetx_032,-23,1.920,-76.246,98.080,10.947,-83.133,89.053,15.30,224,0.875,bicubic
tf_efficientnet_em,-42,1.813,-76.885,98.187,11.627,-82.693,88.373,6.90,240,0.882,bicubic
tf_mixnet_m,+8,1.813,-75.137,98.187,10.547,-82.609,89.453,5.01,224,0.875,bicubic
tf_efficientnet_lite2,-6,1.800,-75.660,98.200,11.147,-82.599,88.853,6.09,260,0.890,bicubic
res2net50_14w_8s,-26,1.787,-76.365,98.213,10.347,-83.495,89.653,25.06,224,0.875,bilinear
res2net50_26w_4s,-20,1.773,-76.173,98.227,10.440,-83.412,89.560,25.70,224,0.875,bilinear
mobilenetv3_large_100,+18,1.760,-74.008,98.240,10.293,-82.247,89.707,5.48,224,0.875,bicubic
densenet121,+20,1.733,-73.841,98.267,10.853,-81.803,89.147,7.98,224,0.875,bicubic
tf_efficientnet_b0,+5,1.693,-75.147,98.307,9.733,-83.493,90.267,5.29,224,0.875,bicubic
tv_resnext50_32x4d,-18,1.680,-75.938,98.320,10.600,-83.098,89.400,25.03,224,0.875,bilinear
mobilenetv3_rw,+16,1.667,-73.961,98.333,10.733,-81.977,89.267,5.48,224,0.875,bicubic
resnet101,-12,1.667,-75.707,98.333,9.813,-83.733,90.187,44.55,224,0.875,bilinear
mobilenetv2_120d,-10,1.640,-75.654,98.360,10.453,-83.049,89.547,5.83,224,0.875,bicubic
mixnet_s,+9,1.587,-74.401,98.413,10.253,-82.541,89.747,4.13,224,0.875,bicubic
densenet201,-11,1.547,-75.743,98.453,9.627,-83.851,90.373,20.01,224,0.875,bicubic
gluon_resnet50_v1c,-34,1.547,-76.463,98.453,10.613,-83.375,89.387,25.58,224,0.875,bicubic
semnasnet_100,+14,1.547,-73.909,98.453,9.320,-83.272,90.680,3.89,224,0.875,bicubic
selecsls42b,-11,1.467,-75.709,98.533,10.440,-82.952,89.560,32.46,224,0.875,bicubic
tf_efficientnet_lite1,-2,1.453,-75.185,98.547,9.707,-83.525,90.293,5.42,240,0.882,bicubic
regnety_008,=,1.427,-74.887,98.573,8.947,-84.115,91.053,6.26,224,0.875,bicubic
ssl_resnet18,+32,1.387,-71.213,98.613,8.160,-83.256,91.840,11.69,224,0.875,bilinear
dla60,-12,1.347,-75.677,98.653,9.467,-83.841,90.533,22.33,224,0.875,bilinear
dpn68,-2,1.347,-74.959,98.653,8.813,-84.157,91.187,12.61,224,0.875,bicubic
res2net50_48w_2s,-27,1.307,-76.207,98.693,8.920,-84.628,91.080,25.29,224,0.875,bilinear
tf_mixnet_s,+1,1.280,-74.368,98.720,8.747,-83.889,91.253,4.13,224,0.875,bicubic
mobilenetv2_140,-7,1.253,-75.271,98.747,9.107,-83.883,90.893,6.11,224,0.875,bicubic
fbnetc_100,+8,1.227,-73.893,98.773,8.747,-83.639,91.253,5.57,224,0.875,bilinear
resnet26d,-12,1.227,-75.453,98.773,9.280,-83.886,90.720,16.01,224,0.875,bicubic
densenet169,-5,1.187,-74.725,98.813,8.320,-84.704,91.680,14.15,224,0.875,bicubic
tf_mobilenetv3_large_100,-1,1.187,-74.329,98.813,7.947,-84.653,92.053,5.48,224,0.875,bilinear
gluon_resnet50_v1b,-36,1.160,-76.418,98.840,9.027,-84.691,90.973,25.56,224,0.875,bicubic
seresnet34,+8,1.120,-73.688,98.880,7.400,-84.726,92.600,21.96,224,0.875,bilinear
tf_efficientnet_es,-28,1.120,-76.144,98.880,8.600,-85.000,91.400,5.44,224,0.875,bicubic
spnasnet_100,+11,1.107,-72.973,98.893,8.253,-83.579,91.747,4.42,224,0.875,bilinear
tf_efficientnet_lite0,+4,1.107,-73.735,98.893,7.493,-84.677,92.507,4.65,224,0.875,bicubic
regnetx_016,-24,1.093,-75.837,98.907,8.627,-84.791,91.373,9.19,224,0.875,bicubic
dla34,+6,1.080,-73.556,98.920,7.693,-84.371,92.307,15.78,224,0.875,bilinear
regnety_006,-5,1.053,-74.207,98.947,8.400,-84.128,91.600,6.06,224,0.875,bicubic
regnety_004,+7,1.013,-73.013,98.987,7.333,-84.415,92.667,4.34,224,0.875,bicubic
resnet34,-4,0.987,-74.125,99.013,7.533,-84.755,92.467,21.80,224,0.875,bilinear
mobilenetv2_110d,-4,0.933,-74.119,99.067,8.107,-84.073,91.893,4.52,224,0.875,bicubic
gluon_resnet34_v1b,+2,0.893,-73.687,99.107,6.600,-85.388,93.400,21.80,224,0.875,bicubic
hrnet_w18_small_v2,-9,0.893,-74.233,99.107,7.387,-85.029,92.613,15.60,224,0.875,bilinear
regnetx_008,-6,0.893,-74.129,99.107,6.907,-85.437,93.093,7.26,224,0.875,bicubic
skresnet18,+6,0.880,-72.164,99.120,7.387,-83.791,92.613,11.96,224,0.875,bicubic
mnasnet_100,-4,0.867,-73.789,99.133,7.867,-84.259,92.133,4.38,224,0.875,bicubic
tf_mobilenetv3_large_075,+1,0.867,-72.575,99.133,6.720,-84.632,93.280,3.99,224,0.875,bilinear
regnetx_006,-1,0.760,-73.102,99.240,6.493,-85.187,93.507,6.20,224,0.875,bicubic
tf_mobilenetv3_small_100,+13,0.747,-67.171,99.253,4.667,-82.995,95.333,2.54,224,0.875,bilinear
seresnet18,+7,0.720,-71.038,99.280,6.027,-84.307,93.973,11.78,224,0.875,bicubic
regnetx_004,+3,0.693,-71.713,99.307,5.507,-85.323,94.493,5.16,224,0.875,bicubic
tv_densenet121,-11,0.680,-74.072,99.320,6.907,-85.245,93.093,7.98,224,0.875,bicubic
regnety_002,+6,0.667,-69.615,99.333,5.533,-84.007,94.467,3.16,224,0.875,bicubic
tf_mobilenetv3_small_075,+11,0.627,-65.091,99.373,4.173,-81.963,95.827,2.04,224,0.875,bilinear
resnet26,-23,0.600,-74.692,99.400,6.880,-85.690,93.120,16.00,224,0.875,bicubic
tv_resnet34,-7,0.600,-72.714,99.400,5.520,-85.900,94.480,21.80,224,0.875,bilinear
mobilenetv2_100,-5,0.533,-72.445,99.467,6.187,-84.829,93.813,3.50,224,0.875,bicubic
dla46_c,+8,0.520,-64.358,99.480,4.187,-82.099,95.813,1.31,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,-3,0.480,-71.764,99.520,4.880,-85.756,95.120,3.92,224,0.875,bilinear
dla60x_c,+3,0.467,-67.441,99.533,5.213,-83.221,94.787,1.34,224,0.875,bilinear
hrnet_w18_small,-6,0.453,-71.889,99.547,4.840,-85.832,95.160,13.19,224,0.875,bilinear
dla46x_c,+2,0.413,-65.567,99.587,4.440,-82.540,95.560,1.08,224,0.875,bilinear
gluon_resnet18_v1b,-5,0.387,-70.443,99.613,4.787,-84.969,95.213,11.69,224,0.875,bicubic
tf_mobilenetv3_small_minimal_100,+3,0.360,-62.538,99.640,2.867,-81.363,97.133,2.04,224,0.875,bilinear
resnet18,-5,0.293,-69.465,99.707,4.040,-85.038,95.960,11.69,224,0.875,bilinear
regnetx_002,-5,0.227,-68.527,99.773,3.987,-84.561,96.013,2.68,224,0.875,bicubic
tv_resnet50,-45,0.000,-76.130,100.000,2.893,-89.969,97.107,25.56,224,0.875,bilinear

1 model rank_diff top1 top1_diff top1_err top5 top5_diff top5_err param_count img_size cropt_pct interpolation
2 tf_efficientnet_l2_ns_475 +1 62.3867 62.387 -25.847 37.6133 37.613 87.1067 87.107 -11.439 12.8933 12.893 480.31 475 0.936 bicubic
3 tf_efficientnet_l2_ns -1 62.0267 62.027 -26.325 37.9733 37.973 87.96 87.960 -10.688 12.04 12.040 480.31 800 0.96 0.960 bicubic
4 tf_efficientnet_b7_ns = 45.72 45.720 -41.118 54.28 54.280 74.2 74.200 -23.894 25.8 25.800 66.35 600 0.949 bicubic
5 ig_resnext101_32x48d +2 41.5733 41.573 -43.869 58.4267 58.427 66.6133 66.613 -30.959 33.3867 33.387 828.41 224 0.875 bilinear
6 tf_efficientnet_b6_ns -1 40.4267 40.427 -46.035 59.5733 59.573 68.84 68.840 -29.044 31.16 31.160 43.04 528 0.942 bicubic
7 ig_resnext101_32x32d +5 39.4133 39.413 -45.679 60.5867 60.587 63.76 63.760 -33.676 36.24 36.240 468.53 224 0.875 bilinear
8 tf_efficientnet_b5_ns -2 39.0133 39.013 -47.067 60.9867 60.987 68.04 68.040 -29.714 31.96 31.960 30.39 456 0.934 bicubic
9 ig_resnext101_32x16d +9 36.0533 36.053 -48.123 63.9467 63.947 59.04 59.040 -38.156 40.96 40.960 194.03 224 0.875 bilinear
10 swsl_resnext101_32x8d +5 32.0667 32.067 -52.227 67.9333 67.933 59.4 59.400 -37.774 40.6 40.600 88.79 224 0.875 bilinear
11 tf_efficientnet_b4_ns -1 30.8 30.800 -54.358 69.2 69.200 59.44 59.440 -38.028 40.56 40.560 19.34 380 0.922 bicubic
12 tf_efficientnet_b8_ap -3 29.6 29.600 -55.768 70.4 70.400 56.9333 56.933 -40.361 43.0667 43.067 87.41 672 0.954 bicubic
13 tf_efficientnet_b8 -5 29.3733 29.373 -55.997 70.6267 70.627 57.0667 57.067 -40.325 42.9333 42.933 87.41 672 0.954 bicubic
14 ig_resnext101_32x8d +16 28.7067 28.707 -53.981 71.2933 71.293 52.32 52.320 -44.312 47.68 47.680 88.79 224 0.875 bilinear
15 swsl_resnext101_32x16d +8 27.9467 27.947 -55.391 72.0533 72.053 52.32 52.320 -44.532 47.68 47.680 194.03 224 0.875 bilinear
16 tf_efficientnet_b7_ap -5 27.8133 27.813 -57.305 72.1867 72.187 54.7733 54.773 -42.479 45.2267 45.227 66.35 600 0.949 bicubic
17 resnest269e = 27.6133 27.613 -56.573 72.3867 72.387 53.1067 53.107 -43.815 46.8933 46.893 110.93 416 0.875 bilinear
18 tresnet_xl_448 +8 26.88 26.880 -56.168 73.12 73.120 51.0933 51.093 -45.081 48.9067 48.907 78.44 448 0.875 bilinear
19 resnest200e +2 26.4267 26.427 -57.407 73.5733 73.573 51.9333 51.933 -44.905 48.0667 48.067 70.2 70.20 320 0.875 bilinear
20 swsl_resnext101_32x4d +5 25.3467 25.347 -57.887 74.6533 74.653 49.6267 49.627 -47.129 50.3733 50.373 44.18 224 0.875 bilinear
21 tf_efficientnet_b7 -8 25.2533 25.253 -59.679 74.7467 74.747 51.6667 51.667 -45.541 48.3333 48.333 66.35 600 0.949 bicubic
22 tresnet_l_448 +11 24.5733 24.573 -57.695 75.4267 75.427 48.6 48.600 -47.378 51.4 51.400 55.99 448 0.875 bilinear
23 tf_efficientnet_b6_ap -9 24.3467 24.347 -60.439 75.6533 75.653 50.4267 50.427 -46.711 49.5733 49.573 43.04 528 0.942 bicubic
24 tf_efficientnet_b6 -5 20.3733 20.373 -63.739 79.6267 79.627 45.4933 45.493 -51.391 54.5067 54.507 43.04 528 0.942 bicubic
25 tresnet_m_448 +15 19.68 19.680 -62.032 80.32 80.320 42.76 42.760 -52.810 57.24 57.240 31.39 448 0.875 bilinear
26 tf_efficientnet_b5_ap -10 19.4667 19.467 -64.787 80.5333 80.533 44.72 44.720 -52.256 55.28 55.280 30.39 456 0.934 bicubic
27 tf_efficientnet_b3_ns -7 19.4133 19.413 -64.641 80.5867 80.587 44.6267 44.627 -52.285 55.3733 55.373 12.23 300 0.904 bicubic
28 swsl_resnext50_32x4d +6 18.0667 18.067 -64.113 81.9333 81.933 41.8667 41.867 -54.361 58.1333 58.133 25.03 224 0.875 bilinear
29 ssl_resnext101_32x16d +9 17.2133 17.213 -64.623 82.7867 82.787 39.9467 39.947 -56.147 60.0533 60.053 194.03 224 0.875 bilinear
30 tf_efficientnet_b5 -8 17.0667 17.067 -66.749 82.9333 82.933 41.9067 41.907 -54.843 58.0933 58.093 30.39 456 0.934 bicubic
31 resnest101e -3 16.4933 16.493 -66.397 83.5067 83.507 40.7467 40.747 -55.577 59.2533 59.253 48.28 256 0.875 bilinear
32 swsl_resnet50 +17 15.9867 15.987 -65.193 84.0133 84.013 38.8533 38.853 -57.133 61.1467 61.147 25.56 224 0.875 bilinear
33 ssl_resnext101_32x8d +9 15.12 15.120 -66.506 84.88 84.880 37.72 37.720 -58.318 62.28 62.280 88.79 224 0.875 bilinear
34 tf_efficientnet_b4_ap -10 13.68 13.680 -69.568 86.32 86.320 35.92 35.920 -60.468 64.08 64.080 19.34 380 0.922 bicubic
35 ecaresnet101d = 13.3067 13.307 -68.859 86.6933 86.693 35.5333 35.533 -60.519 64.4667 64.467 44.57 224 0.875 bicubic
36 tf_efficientnet_b4 -9 13.3067 13.307 -69.709 86.6933 86.693 35.52 35.520 -60.778 64.48 64.480 19.34 380 0.922 bicubic
37 pnasnet5large -8 13.08 13.080 -69.660 86.92 86.920 32.2133 32.213 -63.827 67.7867 67.787 86.06 331 0.875 bicubic
38 nasnetalarge -7 12.5733 12.573 -69.985 87.4267 87.427 33.4133 33.413 -62.623 66.5867 66.587 88.75 331 0.875 bicubic
39 ssl_resnext101_32x4d +15 12.12 12.120 -68.808 87.88 87.880 31.8933 31.893 -63.835 68.1067 68.107 44.18 224 0.875 bilinear
40 tf_efficientnet_b2_ns -8 11.7867 11.787 -70.593 88.2133 88.213 32.96 32.960 -63.292 67.04 67.040 9.11 260 0.89 0.890 bicubic
41 gluon_senet154 +7 9.9067 9.907 -71.317 90.0933 90.093 26.4533 26.453 -68.903 73.5467 73.547 115.09 224 0.875 bicubic
42 resnest50d_4s2x40d +8 9.7867 9.787 -71.327 90.2133 90.213 29.1467 29.147 -66.421 70.8533 70.853 30.42 224 0.875 bicubic
43 ssl_resnext50_32x4d +30 9.6667 9.667 -70.661 90.3333 90.333 28.4267 28.427 -66.977 71.5733 71.573 25.03 224 0.875 bilinear
44 senet154 +3 9.4533 9.453 -71.851 90.5467 90.547 26.44 26.440 -69.058 73.56 73.560 115.09 224 0.875 bilinear
45 tresnet_xl -9 9.3067 9.307 -72.763 90.6933 90.693 28.4133 28.413 -67.515 71.5867 71.587 78.44 224 0.875 bilinear
46 efficientnet_b3a -9 9.2667 9.267 -72.607 90.7333 90.733 28.4267 28.427 -67.413 71.5733 71.573 12.23 320 1.0 1.000 bicubic
47 efficientnet_b3 -3 8.9467 8.947 -72.551 91.0533 91.053 28.2133 28.213 -67.505 71.7867 71.787 12.23 300 0.904 bicubic
48 inception_v4 +32 8.92 8.920 -71.236 91.08 91.080 24.7067 24.707 -70.267 75.2933 75.293 42.68 299 0.875 bicubic
49 gluon_seresnext101_64x4d +7 8.8667 8.867 -72.023 91.1333 91.133 27.32 27.320 -67.984 72.68 72.680 88.23 224 0.875 bicubic
50 tf_efficientnet_b1_ns -4 8.6133 8.613 -72.773 91.3867 91.387 27.28 27.280 -68.458 72.72 72.720 7.79 240 0.882 bicubic
51 resnest50d_1s4x24d +1 8.52 8.520 -72.470 91.48 91.480 26.7867 26.787 -68.535 73.2133 73.213 25.68 224 0.875 bicubic
52 ecaresnet50d +10 8.5067 8.507 -72.097 91.4933 91.493 26.2667 26.267 -69.055 73.7333 73.733 25.58 224 0.875 bicubic
53 gluon_xception65 +45 8.4667 8.467 -71.137 91.5333 91.533 25.1333 25.133 -69.615 74.8667 74.867 39.92 299 0.875 bicubic
54 gluon_resnet152_v1d +11 8.4133 8.413 -72.057 91.5867 91.587 23.4533 23.453 -71.753 76.5467 76.547 60.21 224 0.875 bicubic
55 inception_resnet_v2 +11 8.16 8.160 -72.300 91.84 91.840 23.5333 23.533 -71.777 76.4667 76.467 55.84 299 0.8975 0.897 bicubic
56 tf_efficientnet_b3_ap -17 8.1333 8.133 -73.695 91.8667 91.867 26.28 26.280 -69.344 73.72 73.720 12.23 300 0.904 bicubic
57 gluon_seresnext101_32x4d -2 8.04 8.040 -72.862 91.96 91.960 24.7333 24.733 -70.561 75.2667 75.267 48.96 224 0.875 bicubic
58 tf_efficientnet_b3 -17 8.0133 8.013 -73.627 91.9867 91.987 25.4667 25.467 -70.255 74.5333 74.533 12.23 300 0.904 bicubic
59 ens_adv_inception_resnet_v2 +25 7.9867 7.987 -71.989 92.0133 92.013 23.8267 23.827 -71.119 76.1733 76.173 55.84 299 0.8975 0.897 bicubic
60 tf_efficientnet_lite4 -17 7.9333 7.933 -73.595 92.0667 92.067 25.56 25.560 -70.108 74.44 74.440 13.01 380 0.92 0.920 bilinear
61 tresnet_l -16 7.88 7.880 -73.608 92.12 92.120 25.1867 25.187 -70.441 74.8133 74.813 55.99 224 0.875 bilinear
62 gluon_resnet152_v1s -11 7.8667 7.867 -73.145 92.1333 92.133 23.1733 23.173 -72.243 76.8267 76.827 60.32 224 0.875 bicubic
63 resnest50d -10 7.7467 7.747 -73.211 92.2533 92.253 25.2933 25.293 -70.089 74.7067 74.707 27.48 224 0.875 bilinear
64 gluon_resnext101_64x4d -1 7.7067 7.707 -72.895 92.2933 92.293 23.24 23.240 -71.754 76.76 76.760 83.46 224 0.875 bicubic
65 skresnext50_32x4d +16 7.08 7.080 -73.070 92.92 92.920 23.0267 23.027 -71.617 76.9733 76.973 27.48 224 0.875 bicubic
66 ssl_resnet50 +45 7.0 7.000 -72.228 93.0 93.000 23.92 23.920 -70.912 76.08 76.080 25.56 224 0.875 bilinear
67 regnety_320 -9 6.92 6.920 -73.894 93.08 93.080 23.04 23.040 -72.200 76.96 76.960 145.05 224 0.875 bicubic
68 ecaresnet101d_pruned -9 6.8 6.800 -74.008 93.2 93.200 24.2 24.200 -71.428 75.8 75.800 24.88 224 0.875 bicubic
69 ecaresnetlight -2 6.76 6.760 -73.694 93.24 93.240 22.56 22.560 -72.696 77.44 77.440 30.16 224 0.875 bicubic
70 efficientnet_b2a -9 6.76 6.760 -73.848 93.24 93.240 23.4933 23.493 -71.817 76.5067 76.507 9.11 288 1.0 1.000 bicubic
71 seresnext101_32x4d +7 6.4133 6.413 -73.823 93.5867 93.587 21.52 21.520 -73.508 78.48 78.480 48.96 224 0.875 bilinear
72 efficientnet_b2 -2 6.0933 6.093 -74.309 93.9067 93.907 21.9333 21.933 -73.143 78.0667 78.067 9.11 260 0.875 bicubic
73 gluon_resnext101_32x4d -1 6.04 6.040 -74.294 93.96 93.960 21.1333 21.133 -73.793 78.8667 78.867 44.18 224 0.875 bicubic
74 regnetx_320 +3 5.9867 5.987 -74.259 94.0133 94.013 19.88 19.880 -75.142 80.12 80.120 107.81 224 0.875 bicubic
75 ese_vovnet39b +29 5.9733 5.973 -73.347 94.0267 94.027 21.2933 21.293 -73.417 78.7067 78.707 24.57 224 0.875 bicubic
76 gluon_resnet101_v1d -7 5.92 5.920 -74.504 94.08 94.080 19.9467 19.947 -75.073 80.0533 80.053 44.57 224 0.875 bicubic
77 gluon_seresnext50_32x4d +10 5.7867 5.787 -74.125 94.2133 94.213 21.4267 21.427 -73.391 78.5733 78.573 27.56 224 0.875 bicubic
78 efficientnet_b3_pruned -21 5.7333 5.733 -75.123 94.2667 94.267 21.36 21.360 -73.880 78.64 78.640 9.86 300 0.904 bicubic
79 regnety_160 -3 5.64 5.640 -74.660 94.36 94.360 19.3467 19.347 -75.615 80.6533 80.653 83.59 224 0.875 bicubic
80 gluon_inception_v3 +47 5.5067 5.507 -73.297 94.4933 94.493 19.9467 19.947 -74.433 80.0533 80.053 23.83 299 0.875 bicubic
81 mixnet_xl -17 5.48 5.480 -74.998 94.52 94.520 21.0933 21.093 -73.839 78.9067 78.907 11.9 11.90 224 0.875 bicubic
82 tresnet_m -22 5.44 5.440 -75.356 94.56 94.560 19.96 19.960 -74.896 80.04 80.040 31.39 224 0.875 bilinear
83 regnety_120 -12 5.4133 5.413 -74.969 94.5867 94.587 19.8533 19.853 -75.275 80.1467 80.147 51.82 224 0.875 bicubic
84 gluon_resnet101_v1s -9 5.28 5.280 -75.020 94.72 94.720 19.5467 19.547 -75.603 80.4533 80.453 44.67 224 0.875 bicubic
85 hrnet_w64 +16 5.1333 5.133 -74.339 94.8667 94.867 19.4533 19.453 -75.197 80.5467 80.547 128.06 224 0.875 bilinear
86 regnety_080 +2 5.0 5.000 -74.868 95.0 95.000 18.6 18.600 -76.232 81.4 81.400 39.18 224 0.875 bicubic
87 efficientnet_b2_pruned -2 4.9467 4.947 -74.971 95.0533 95.053 19.3467 19.347 -75.501 80.6533 80.653 8.31 260 0.89 0.890 bicubic
88 dpn107 -9 4.88 4.880 -75.284 95.12 95.120 17.6133 17.613 -77.299 82.3867 82.387 86.92 224 0.875 bicubic
89 gluon_resnet152_v1c -3 4.8667 4.867 -75.049 95.1333 95.133 17.7733 17.773 -77.069 82.2267 82.227 60.21 224 0.875 bicubic
90 adv_inception_v3 +76 4.7467 4.747 -72.833 95.2533 95.253 17.5467 17.547 -76.177 82.4533 82.453 23.83 299 0.875 bicubic
91 dla102x2 +11 4.7467 4.747 -74.705 95.2533 95.253 18.96 18.960 -75.684 81.04 81.040 41.75 224 0.875 bilinear
92 tf_inception_v3 +68 4.7467 4.747 -73.109 95.2533 95.253 17.7467 17.747 -75.897 82.2533 82.253 23.83 299 0.875 bicubic
93 hrnet_w48 +13 4.72 4.720 -74.590 95.28 95.280 18.44 18.440 -76.078 81.56 81.560 77.47 224 0.875 bilinear
94 dpn131 -4 4.64 4.640 -75.188 95.36 95.360 16.8667 16.867 -77.837 83.1333 83.133 79.25 224 0.875 bicubic
95 gluon_resnet152_v1b = 4.5867 4.587 -75.105 95.4133 95.413 16.5333 16.533 -78.205 83.4667 83.467 60.19 224 0.875 bicubic
96 ecaresnet50d_pruned -3 4.5467 4.547 -75.171 95.4533 95.453 18.5467 18.547 -76.343 81.4533 81.453 19.94 224 0.875 bicubic
97 dpn92 -14 4.4933 4.493 -75.523 95.5067 95.507 18.2 18.200 -76.638 81.8 81.800 37.67 224 0.875 bicubic
98 hrnet_w44 +25 4.4933 4.493 -74.401 95.5067 95.507 17.3467 17.347 -77.023 82.6533 82.653 67.06 224 0.875 bilinear
99 regnetx_160 -10 4.3733 4.373 -75.493 95.6267 95.627 17.0933 17.093 -77.735 82.9067 82.907 54.28 224 0.875 bicubic
100 resnext50d_32x4d -4 4.3467 4.347 -75.327 95.6533 95.653 17.7733 17.773 -77.095 82.2267 82.227 25.05 224 0.875 bicubic
101 xception +18 4.3467 4.347 -74.701 95.6533 95.653 16.76 16.760 -77.632 83.24 83.240 22.86 299 0.8975 0.897 bicubic
102 seresnext50_32x4d +14 4.28 4.280 -74.796 95.72 95.720 17.8133 17.813 -76.621 82.1867 82.187 27.56 224 0.875 bilinear
103 resnext50_32x4d -11 4.2533 4.253 -75.509 95.7467 95.747 18.3867 18.387 -76.213 81.6133 81.613 25.03 224 0.875 bicubic
104 tf_efficientnet_cc_b1_8e +4 4.24 4.240 -75.058 95.76 95.760 15.9467 15.947 -78.417 84.0533 84.053 39.72 240 0.882 bicubic
105 regnety_064 -11 4.2267 4.227 -75.485 95.7733 95.773 17.1867 17.187 -77.587 82.8133 82.813 30.58 224 0.875 bicubic
106 tf_efficientnet_el -38 4.2267 4.227 -76.221 95.7733 95.773 18.1733 18.173 -76.987 81.8267 81.827 10.59 300 0.904 bicubic
107 inception_v3 +64 4.1867 4.187 -73.249 95.8133 95.813 16.2933 16.293 -77.183 83.7067 83.707 23.83 299 0.875 bicubic
108 tf_efficientnet_b2_ap -34 4.1733 4.173 -76.133 95.8267 95.827 18.32 18.320 -76.708 81.68 81.680 9.11 260 0.89 0.890 bicubic
109 seresnet152 +24 4.1467 4.147 -74.511 95.8533 95.853 15.8933 15.893 -78.481 84.1067 84.107 66.82 224 0.875 bilinear
110 resnext101_32x8d -5 4.1333 4.133 -75.179 95.8667 95.867 16.9867 16.987 -77.539 83.0133 83.013 88.79 224 0.875 bilinear
111 tf_efficientnet_b0_ns +23 4.1333 4.133 -74.519 95.8667 95.867 17.68 17.680 -76.688 82.32 82.320 5.29 224 0.875 bicubic
112 dpn98 -15 4.08 4.080 -75.556 95.92 95.920 15.9467 15.947 -78.647 84.0533 84.053 61.57 224 0.875 bicubic
113 res2net101_26w_4s +2 4.0 4.000 -75.196 96.0 96.000 14.8267 14.827 -79.613 85.1733 85.173 45.21 224 0.875 bilinear
114 efficientnet_b1 +17 3.9733 3.973 -74.725 96.0267 96.027 15.76 15.760 -78.392 84.24 84.240 7.79 240 0.875 bicubic
115 tf_efficientnet_lite3 -24 3.9333 3.933 -75.879 96.0667 96.067 16.52 16.520 -78.394 83.48 83.480 8.2 8.20 300 0.904 bilinear
116 tf_efficientnet_b2 -34 3.7733 3.773 -76.317 96.2267 96.227 16.6133 16.613 -78.293 83.3867 83.387 9.11 260 0.89 0.890 bicubic
117 regnety_040 -5 3.7467 3.747 -75.475 96.2533 96.253 16.4 16.400 -78.256 83.6 83.600 20.65 224 0.875 bicubic
118 hrnet_w30 +31 3.68 3.680 -74.516 96.32 96.320 15.5733 15.573 -78.647 84.4267 84.427 37.71 224 0.875 bilinear
119 hrnet_w32 +23 3.6533 3.653 -74.795 96.3467 96.347 14.7867 14.787 -79.401 85.2133 85.213 41.23 224 0.875 bilinear
120 hrnet_w40 +2 3.6533 3.653 -75.281 96.3467 96.347 15.44 15.440 -79.026 84.56 84.560 57.56 224 0.875 bilinear
121 regnetx_120 -22 3.6267 3.627 -75.963 96.3733 96.373 15.9733 15.973 -78.767 84.0267 84.027 46.11 224 0.875 bicubic
122 seresnext26t_32x4d +34 3.6133 3.613 -74.375 96.3867 96.387 15.8933 15.893 -77.813 84.1067 84.107 16.82 224 0.875 bicubic
123 tf_efficientnet_b1_ap -13 3.5467 3.547 -75.731 96.4533 96.453 15.0667 15.067 -79.241 84.9333 84.933 7.79 240 0.882 bicubic
124 seresnext26tn_32x4d +31 3.5067 3.507 -74.483 96.4933 96.493 15.76 15.760 -77.988 84.24 84.240 16.81 224 0.875 bicubic
125 resnest26d +13 3.4933 3.493 -74.989 96.5067 96.507 15.6667 15.667 -78.623 84.3333 84.333 17.07 224 0.875 bilinear
126 dla169 +4 3.4667 3.467 -75.243 96.5333 96.533 15.3333 15.333 -79.005 84.6667 84.667 53.99 224 0.875 bilinear
127 gluon_resnext50_32x4d -24 3.4533 3.453 -75.903 96.5467 96.547 16.12 16.120 -78.304 83.88 83.880 25.03 224 0.875 bicubic
128 mixnet_l -7 3.44 3.440 -75.536 96.56 96.560 15.3067 15.307 -78.877 84.6933 84.693 7.33 224 0.875 bicubic
129 seresnext26d_32x4d +36 3.4 3.400 -74.204 96.6 96.600 16.16 16.160 -77.452 83.84 83.840 16.81 224 0.875 bicubic
130 res2net50_26w_8s -17 3.3333 3.333 -75.877 96.6667 96.667 14.04 14.040 -80.322 85.96 85.960 48.4 48.40 224 0.875 bilinear
131 resnetblur50 -22 3.3333 3.333 -75.957 96.6667 96.667 15.5867 15.587 -79.045 84.4133 84.413 25.56 224 0.875 bicubic
132 dla102x +4 3.3067 3.307 -75.201 96.6933 96.693 15.12 15.120 -79.114 84.88 84.880 26.77 224 0.875 bilinear
133 gluon_resnet101_v1c -33 3.3067 3.307 -76.237 96.6933 96.693 14.12 14.120 -80.466 85.88 85.880 44.57 224 0.875 bicubic
134 seresnet101 +10 3.2533 3.253 -75.143 96.7467 96.747 15.4533 15.453 -78.805 84.5467 84.547 49.33 224 0.875 bilinear
135 densenetblur121d +55 3.0667 3.067 -73.509 96.9333 96.933 14.28 14.280 -78.910 85.72 85.720 8.0 8.00 224 0.875 bicubic
136 dla60_res2next +5 3.04 3.040 -75.408 96.96 96.960 14.4533 14.453 -79.691 85.5467 85.547 17.33 224 0.875 bilinear
137 regnety_032 -13 3.0267 3.027 -75.843 96.9733 96.973 14.24 14.240 -80.162 85.76 85.760 19.44 224 0.875 bicubic
138 gluon_resnet50_v1d -21 3.0133 3.013 -76.061 96.9867 96.987 14.6267 14.627 -79.849 85.3733 85.373 25.58 224 0.875 bicubic
139 wide_resnet101_2 -14 2.96 2.960 -75.886 97.04 97.040 13.9467 13.947 -80.337 86.0533 86.053 126.89 224 0.875 bilinear
140 efficientnet_b1_pruned +7 2.9333 2.933 -75.309 97.0667 97.067 14.4133 14.413 -79.419 85.5867 85.587 6.33 240 0.882 bicubic
141 gluon_resnet50_v1s -12 2.92 2.920 -75.792 97.08 97.080 13.12 13.120 -81.122 86.88 86.880 25.68 224 0.875 bicubic
142 tf_efficientnet_b1 -16 2.8667 2.867 -75.965 97.1333 97.133 13.5067 13.507 -80.689 86.4933 86.493 7.79 240 0.882 bicubic
143 res2net50_26w_6s -8 2.84 2.840 -75.734 97.16 97.160 12.6 12.600 -81.526 87.4 87.400 37.05 224 0.875 bilinear
144 efficientnet_b0 +18 2.8133 2.813 -74.879 97.1867 97.187 13.9067 13.907 -79.625 86.0933 86.093 5.29 224 0.875 bicubic
145 tf_mixnet_l -17 2.8133 2.813 -75.957 97.1867 97.187 13.04 13.040 -80.964 86.96 86.960 7.33 224 0.875 bicubic
146 regnetx_064 -28 2.7867 2.787 -76.279 97.2133 97.213 13.88 13.880 -80.576 86.12 86.120 26.21 224 0.875 bicubic
147 dpn68b +21 2.7067 2.707 -74.807 97.2933 97.293 12.64 12.640 -81.182 87.36 87.360 12.61 224 0.875 bicubic
148 selecsls60b -5 2.6933 2.693 -75.725 97.3067 97.307 13.1733 13.173 -80.993 86.8267 86.827 32.77 224 0.875 bicubic
149 tf_efficientnet_cc_b0_8e +10 2.68 2.680 -75.228 97.32 97.320 12.7733 12.773 -80.883 87.2267 87.227 24.01 224 0.875 bicubic
150 dla60_res2net -11 2.64 2.640 -75.832 97.36 97.360 14.2 14.200 -80.004 85.8 85.800 21.15 224 0.875 bilinear
151 gluon_resnet101_v1b -44 2.6267 2.627 -76.677 97.3733 97.373 13.5733 13.573 -80.951 86.4267 86.427 44.55 224 0.875 bicubic
152 dla60x -6 2.6133 2.613 -75.629 97.3867 97.387 13.3333 13.333 -80.689 86.6667 86.667 17.65 224 0.875 bilinear
153 mixnet_m +25 2.5467 2.547 -74.709 97.4533 97.453 12.4267 12.427 -80.991 87.5733 87.573 5.01 224 0.875 bicubic
154 skresnet34 +31 2.52 2.520 -74.390 97.48 97.480 12.7733 12.773 -80.543 87.2267 87.227 22.28 224 0.875 bicubic
155 efficientnet_es -3 2.3733 2.373 -75.681 97.6267 97.627 13.88 13.880 -80.050 86.12 86.120 5.44 224 0.875 bicubic
156 resnet152 -11 2.36 2.360 -75.952 97.64 97.640 12.2 12.200 -81.846 87.8 87.800 60.19 224 0.875 bilinear
157 regnetx_080 -43 2.3467 2.347 -76.851 97.6533 97.653 12.6933 12.693 -81.865 87.3067 87.307 39.57 224 0.875 bicubic
158 swsl_resnet18 +64 2.3333 2.333 -70.953 97.6667 97.667 11.2133 11.213 -80.519 88.7867 88.787 11.69 224 0.875 bilinear
159 wide_resnet50_2 -19 2.32 2.320 -76.148 97.68 97.680 11.8 11.800 -82.286 88.2 88.200 68.88 224 0.875 bilinear
160 seresnext26_32x4d +20 2.2933 2.293 -74.807 97.7067 97.707 12.44 12.440 -80.870 87.56 87.560 16.79 224 0.875 bicubic
161 hrnet_w18 +26 2.2667 2.267 -74.489 97.7333 97.733 11.8533 11.853 -81.589 88.1467 88.147 21.3 21.30 224 0.875 bilinear
162 dla102 -9 2.2533 2.253 -75.773 97.7467 97.747 12.12 12.120 -81.830 87.88 87.880 33.73 224 0.875 bilinear
163 resnet50 -43 2.2267 2.227 -76.805 97.7733 97.773 11.3333 11.333 -83.051 88.6667 88.667 25.56 224 0.875 bicubic
164 regnety_016 -3 2.1733 2.173 -75.679 97.8267 97.827 11.44 11.440 -82.276 88.56 88.560 11.2 11.20 224 0.875 bicubic
165 regnetx_040 -28 2.16 2.160 -76.326 97.84 97.840 11.8 11.800 -82.442 88.2 88.200 22.12 224 0.875 bicubic
166 resnest14d +36 2.1467 2.147 -73.357 97.8533 97.853 10.4 10.400 -82.114 89.6 89.600 10.61 224 0.875 bilinear
167 selecsls60 -10 2.08 2.080 -75.902 97.92 97.920 12.84 12.840 -80.992 87.16 87.160 30.67 224 0.875 bicubic
168 tf_efficientnet_cc_b0_4e +6 2.08 2.080 -75.224 97.92 97.920 10.9733 10.973 -82.359 89.0267 89.027 13.31 224 0.875 bicubic
169 res2next50 -21 2.0667 2.067 -76.175 97.9333 97.933 11.4533 11.453 -82.439 88.5467 88.547 24.67 224 0.875 bilinear
170 seresnet50 -7 2.0667 2.067 -75.569 97.9333 97.933 12.2667 12.267 -81.485 87.7333 87.733 28.09 224 0.875 bilinear
171 densenet161 +2 1.9733 1.973 -75.375 98.0267 98.027 10.5867 10.587 -83.061 89.4133 89.413 28.68 224 0.875 bicubic
172 tf_efficientnet_b0_ap +9 1.96 1.960 -75.124 98.04 98.040 10.8 10.800 -82.454 89.2 89.200 5.29 224 0.875 bicubic
173 regnetx_032 -23 1.92 1.920 -76.246 98.08 98.080 10.9467 10.947 -83.133 89.0533 89.053 15.3 15.30 224 0.875 bicubic
174 tf_efficientnet_em -42 1.8133 1.813 -76.885 98.1867 98.187 11.6267 11.627 -82.693 88.3733 88.373 6.9 6.90 240 0.882 bicubic
175 tf_mixnet_m +8 1.8133 1.813 -75.137 98.1867 98.187 10.5467 10.547 -82.609 89.4533 89.453 5.01 224 0.875 bicubic
176 tf_efficientnet_lite2 -6 1.8 1.800 -75.660 98.2 98.200 11.1467 11.147 -82.599 88.8533 88.853 6.09 260 0.89 0.890 bicubic
177 res2net50_14w_8s -26 1.7867 1.787 -76.365 98.2133 98.213 10.3467 10.347 -83.495 89.6533 89.653 25.06 224 0.875 bilinear
178 res2net50_26w_4s -20 1.7733 1.773 -76.173 98.2267 98.227 10.44 10.440 -83.412 89.56 89.560 25.7 25.70 224 0.875 bilinear
179 mobilenetv3_large_100 +18 1.76 1.760 -74.008 98.24 98.240 10.2933 10.293 -82.247 89.7067 89.707 5.48 224 0.875 bicubic
180 densenet121 +20 1.7333 1.733 -73.841 98.2667 98.267 10.8533 10.853 -81.803 89.1467 89.147 7.98 224 0.875 bicubic
181 tf_efficientnet_b0 +5 1.6933 1.693 -75.147 98.3067 98.307 9.7333 9.733 -83.493 90.2667 90.267 5.29 224 0.875 bicubic
182 tv_resnext50_32x4d -18 1.68 1.680 -75.938 98.32 98.320 10.6 10.600 -83.098 89.4 89.400 25.03 224 0.875 bilinear
183 mobilenetv3_rw +16 1.6667 1.667 -73.961 98.3333 98.333 10.7333 10.733 -81.977 89.2667 89.267 5.48 224 0.875 bicubic
184 resnet101 -12 1.6667 1.667 -75.707 98.3333 98.333 9.8133 9.813 -83.733 90.1867 90.187 44.55 224 0.875 bilinear
185 mobilenetv2_120d -10 1.64 1.640 -75.654 98.36 98.360 10.4533 10.453 -83.049 89.5467 89.547 5.83 224 0.875 bicubic
186 mixnet_s +9 1.5867 1.587 -74.401 98.4133 98.413 10.2533 10.253 -82.541 89.7467 89.747 4.13 224 0.875 bicubic
187 densenet201 -11 1.5467 1.547 -75.743 98.4533 98.453 9.6267 9.627 -83.851 90.3733 90.373 20.01 224 0.875 bicubic
188 gluon_resnet50_v1c -34 1.5467 1.547 -76.463 98.4533 98.453 10.6133 10.613 -83.375 89.3867 89.387 25.58 224 0.875 bicubic
189 semnasnet_100 +14 1.5467 1.547 -73.909 98.4533 98.453 9.32 9.320 -83.272 90.68 90.680 3.89 224 0.875 bicubic
190 selecsls42b -11 1.4667 1.467 -75.709 98.5333 98.533 10.44 10.440 -82.952 89.56 89.560 32.46 224 0.875 bicubic
191 tf_efficientnet_lite1 -2 1.4533 1.453 -75.185 98.5467 98.547 9.7067 9.707 -83.525 90.2933 90.293 5.42 240 0.882 bicubic
192 regnety_008 = 1.4267 1.427 -74.887 98.5733 98.573 8.9467 8.947 -84.115 91.0533 91.053 6.26 224 0.875 bicubic
193 ssl_resnet18 +32 1.3867 1.387 -71.213 98.6133 98.613 8.16 8.160 -83.256 91.84 91.840 11.69 224 0.875 bilinear
194 dla60 -12 1.3467 1.347 -75.677 98.6533 98.653 9.4667 9.467 -83.841 90.5333 90.533 22.33 224 0.875 bilinear
195 dpn68 -2 1.3467 1.347 -74.959 98.6533 98.653 8.8133 8.813 -84.157 91.1867 91.187 12.61 224 0.875 bicubic
196 res2net50_48w_2s -27 1.3067 1.307 -76.207 98.6933 98.693 8.92 8.920 -84.628 91.08 91.080 25.29 224 0.875 bilinear
197 tf_mixnet_s +1 1.28 1.280 -74.368 98.72 98.720 8.7467 8.747 -83.889 91.2533 91.253 4.13 224 0.875 bicubic
198 mobilenetv2_140 -7 1.2533 1.253 -75.271 98.7467 98.747 9.1067 9.107 -83.883 90.8933 90.893 6.11 224 0.875 bicubic
199 fbnetc_100 +8 1.2267 1.227 -73.893 98.7733 98.773 8.7467 8.747 -83.639 91.2533 91.253 5.57 224 0.875 bilinear
200 resnet26d -12 1.2267 1.227 -75.453 98.7733 98.773 9.28 9.280 -83.886 90.72 90.720 16.01 224 0.875 bicubic
201 densenet169 -5 1.1867 1.187 -74.725 98.8133 98.813 8.32 8.320 -84.704 91.68 91.680 14.15 224 0.875 bicubic
202 tf_mobilenetv3_large_100 -1 1.1867 1.187 -74.329 98.8133 98.813 7.9467 7.947 -84.653 92.0533 92.053 5.48 224 0.875 bilinear
203 gluon_resnet50_v1b -36 1.16 1.160 -76.418 98.84 98.840 9.0267 9.027 -84.691 90.9733 90.973 25.56 224 0.875 bicubic
204 seresnet34 +8 1.12 1.120 -73.688 98.88 98.880 7.4 7.400 -84.726 92.6 92.600 21.96 224 0.875 bilinear
205 tf_efficientnet_es -28 1.12 1.120 -76.144 98.88 98.880 8.6 8.600 -85.000 91.4 91.400 5.44 224 0.875 bicubic
206 spnasnet_100 +11 1.1067 1.107 -72.973 98.8933 98.893 8.2533 8.253 -83.579 91.7467 91.747 4.42 224 0.875 bilinear
207 tf_efficientnet_lite0 +4 1.1067 1.107 -73.735 98.8933 98.893 7.4933 7.493 -84.677 92.5067 92.507 4.65 224 0.875 bicubic
208 regnetx_016 -24 1.0933 1.093 -75.837 98.9067 98.907 8.6267 8.627 -84.791 91.3733 91.373 9.19 224 0.875 bicubic
209 dla34 +6 1.08 1.080 -73.556 98.92 98.920 7.6933 7.693 -84.371 92.3067 92.307 15.78 224 0.875 bilinear
210 regnety_006 -5 1.0533 1.053 -74.207 98.9467 98.947 8.4 8.400 -84.128 91.6 91.600 6.06 224 0.875 bicubic
211 regnety_004 +7 1.0133 1.013 -73.013 98.9867 98.987 7.3333 7.333 -84.415 92.6667 92.667 4.34 224 0.875 bicubic
212 resnet34 -4 0.9867 0.987 -74.125 99.0133 99.013 7.5333 7.533 -84.755 92.4667 92.467 21.8 21.80 224 0.875 bilinear
213 mobilenetv2_110d -4 0.9333 0.933 -74.119 99.0667 99.067 8.1067 8.107 -84.073 91.8933 91.893 4.52 224 0.875 bicubic
214 gluon_resnet34_v1b +2 0.8933 0.893 -73.687 99.1067 99.107 6.6 6.600 -85.388 93.4 93.400 21.8 21.80 224 0.875 bicubic
215 hrnet_w18_small_v2 -9 0.8933 0.893 -74.233 99.1067 99.107 7.3867 7.387 -85.029 92.6133 92.613 15.6 15.60 224 0.875 bilinear
216 regnetx_008 -6 0.8933 0.893 -74.129 99.1067 99.107 6.9067 6.907 -85.437 93.0933 93.093 7.26 224 0.875 bicubic
217 skresnet18 +6 0.88 0.880 -72.164 99.12 99.120 7.3867 7.387 -83.791 92.6133 92.613 11.96 224 0.875 bicubic
218 mnasnet_100 -4 0.8667 0.867 -73.789 99.1333 99.133 7.8667 7.867 -84.259 92.1333 92.133 4.38 224 0.875 bicubic
219 tf_mobilenetv3_large_075 +1 0.8667 0.867 -72.575 99.1333 99.133 6.72 6.720 -84.632 93.28 93.280 3.99 224 0.875 bilinear
220 regnetx_006 -1 0.76 0.760 -73.102 99.24 99.240 6.4933 6.493 -85.187 93.5067 93.507 6.2 6.20 224 0.875 bicubic
221 tf_mobilenetv3_small_100 +13 0.7467 0.747 -67.171 99.2533 99.253 4.6667 4.667 -82.995 95.3333 95.333 2.54 224 0.875 bilinear
222 seresnet18 +7 0.72 0.720 -71.038 99.28 99.280 6.0267 6.027 -84.307 93.9733 93.973 11.78 224 0.875 bicubic
223 regnetx_004 +3 0.6933 0.693 -71.713 99.3067 99.307 5.5067 5.507 -85.323 94.4933 94.493 5.16 224 0.875 bicubic
224 tv_densenet121 -11 0.68 0.680 -74.072 99.32 99.320 6.9067 6.907 -85.245 93.0933 93.093 7.98 224 0.875 bicubic
225 regnety_002 +6 0.6667 0.667 -69.615 99.3333 99.333 5.5333 5.533 -84.007 94.4667 94.467 3.16 224 0.875 bicubic
226 tf_mobilenetv3_small_075 +11 0.6267 0.627 -65.091 99.3733 99.373 4.1733 4.173 -81.963 95.8267 95.827 2.04 224 0.875 bilinear
227 resnet26 -23 0.6 0.600 -74.692 99.4 99.400 6.88 6.880 -85.690 93.12 93.120 16.0 16.00 224 0.875 bicubic
228 tv_resnet34 -7 0.6 0.600 -72.714 99.4 99.400 5.52 5.520 -85.900 94.48 94.480 21.8 21.80 224 0.875 bilinear
229 mobilenetv2_100 -5 0.5333 0.533 -72.445 99.4667 99.467 6.1867 6.187 -84.829 93.8133 93.813 3.5 3.50 224 0.875 bicubic
230 dla46_c +8 0.52 0.520 -64.358 99.48 99.480 4.1867 4.187 -82.099 95.8133 95.813 1.31 224 0.875 bilinear
231 tf_mobilenetv3_large_minimal_100 -3 0.48 0.480 -71.764 99.52 99.520 4.88 4.880 -85.756 95.12 95.120 3.92 224 0.875 bilinear
232 dla60x_c +3 0.4667 0.467 -67.441 99.5333 99.533 5.2133 5.213 -83.221 94.7867 94.787 1.34 224 0.875 bilinear
233 hrnet_w18_small -6 0.4533 0.453 -71.889 99.5467 99.547 4.84 4.840 -85.832 95.16 95.160 13.19 224 0.875 bilinear
234 dla46x_c +2 0.4133 0.413 -65.567 99.5867 99.587 4.44 4.440 -82.540 95.56 95.560 1.08 224 0.875 bilinear
235 gluon_resnet18_v1b -5 0.3867 0.387 -70.443 99.6133 99.613 4.7867 4.787 -84.969 95.2133 95.213 11.69 224 0.875 bicubic
236 tf_mobilenetv3_small_minimal_100 +3 0.36 0.360 -62.538 99.64 99.640 2.8667 2.867 -81.363 97.1333 97.133 2.04 224 0.875 bilinear
237 resnet18 -5 0.2933 0.293 -69.465 99.7067 99.707 4.04 4.040 -85.038 95.96 95.960 11.69 224 0.875 bilinear
238 regnetx_002 -5 0.2267 0.227 -68.527 99.7733 99.773 3.9867 3.987 -84.561 96.0133 96.013 2.68 224 0.875 bicubic
239 tv_resnet50 -45 0.0 0.000 -76.130 100.0 100.000 2.8933 2.893 -89.969 97.1067 97.107 25.56 224 0.875 bilinear

@ -1,215 +1,215 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
tf_efficientnet_l2_ns_475,80.47,19.53,95.73,4.27,480.31,475,0.936,bicubic
tf_efficientnet_l2_ns,80.25,19.75,95.85,4.15,480.31,800,0.96,bicubic
tf_efficientnet_b7_ns,78.52,21.48,94.37,5.63,66.35,600,0.949,bicubic
tf_efficientnet_b6_ns,77.28,22.72,93.89,6.11,43.04,528,0.942,bicubic
ig_resnext101_32x48d,76.87,23.13,93.32,6.68,828.41,224,0.875,bilinear
ig_resnext101_32x32d,76.84,23.16,93.19,6.81,468.53,224,0.875,bilinear
tf_efficientnet_b5_ns,76.82,23.18,93.58,6.42,30.39,456,0.934,bicubic
tf_efficientnet_b7_ap,76.09,23.91,92.97,7.03,66.35,600,0.949,bicubic
tf_efficientnet_b8_ap,76.09,23.91,92.73,7.27,87.41,672,0.954,bicubic
ig_resnext101_32x16d,75.71,24.29,92.9,7.1,194.03,224,0.875,bilinear
tf_efficientnet_b4_ns,75.69,24.31,93.04,6.96,19.34,380,0.922,bicubic
swsl_resnext101_32x8d,75.45,24.55,92.75,7.25,88.79,224,0.875,bilinear
tf_efficientnet_b6_ap,75.38,24.62,92.44,7.56,43.04,528,0.942,bicubic
tf_efficientnet_b8,74.93,25.07,92.32,7.68,87.41,672,0.954,bicubic
tf_efficientnet_b7,74.72,25.28,92.22,7.78,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,74.59,25.41,91.99,8.01,30.39,456,0.934,bicubic
swsl_resnext101_32x4d,74.15,25.85,91.99,8.01,44.18,224,0.875,bilinear
swsl_resnext101_32x16d,74.01,25.99,92.17,7.83,194.03,224,0.875,bilinear
resnest200e,73.93,26.07,91.58,8.42,70.2,320,0.875,bilinear
tf_efficientnet_b6,73.9,26.1,91.75,8.25,43.04,528,0.942,bicubic
tf_efficientnet_b3_ns,73.87,26.13,91.86,8.14,12.23,300,0.904,bicubic
ig_resnext101_32x8d,73.66,26.34,92.15,7.85,88.79,224,0.875,bilinear
tf_efficientnet_b5,73.54,26.46,91.46,8.54,30.39,456,0.934,bicubic
resnest269e,73.46,26.54,91.68,8.32,110.93,416,0.875,bilinear
tf_efficientnet_b4_ap,72.89,27.11,90.98,9.02,19.34,380,0.922,bicubic
swsl_resnext50_32x4d,72.58,27.42,90.84,9.16,25.03,224,0.875,bilinear
resnest101e,72.55,27.45,90.81,9.19,48.28,256,0.875,bilinear
tresnet_xl_448,72.55,27.45,90.31,9.69,78.44,448,0.875,bilinear
pnasnet5large,72.37,27.63,90.26,9.74,86.06,331,0.875,bicubic
nasnetalarge,72.31,27.69,90.51,9.49,88.75,331,0.875,bicubic
tf_efficientnet_b4,72.28,27.72,90.6,9.4,19.34,380,0.922,bicubic
tf_efficientnet_b2_ns,72.27,27.73,91.09,8.91,9.11,260,0.89,bicubic
swsl_resnet50,71.69,28.31,90.51,9.49,25.56,224,0.875,bilinear
tresnet_xl,71.65,28.35,89.63,10.37,78.44,224,0.875,bilinear
tresnet_l_448,71.6,28.4,90.06,9.94,55.99,448,0.875,bilinear
ecaresnet101d,71.5,28.5,90.31,9.69,44.57,224,0.875,bicubic
ssl_resnext101_32x8d,71.49,28.51,90.47,9.53,88.79,224,0.875,bilinear
ssl_resnext101_32x16d,71.4,28.6,90.55,9.45,194.03,224,0.875,bilinear
tresnet_m_448,71.0,29.0,88.68,11.32,31.39,448,0.875,bilinear
resnest50d_4s2x40d,70.94,29.06,89.71,10.29,30.42,224,0.875,bicubic
tf_efficientnet_b3_ap,70.92,29.08,89.43,10.57,12.23,300,0.904,bicubic
efficientnet_b3a,70.87,29.13,89.72,10.28,12.23,320,1.0,bicubic
tf_efficientnet_b1_ns,70.85,29.15,90.11,9.89,7.79,240,0.882,bicubic
tresnet_l,70.83,29.17,89.61,10.39,55.99,224,0.875,bilinear
efficientnet_b3,70.76,29.24,89.84,10.16,12.23,300,0.904,bicubic
tf_efficientnet_b3,70.62,29.38,89.44,10.56,12.23,300,0.904,bicubic
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
ssl_resnext101_32x4d,70.5,29.5,89.76,10.24,44.18,224,0.875,bilinear
senet154,70.48,29.52,88.99,11.01,115.09,224,0.875,bilinear
gluon_seresnext101_64x4d,70.44,29.56,89.35,10.65,88.23,224,0.875,bicubic
resnest50d_1s4x24d,70.43,29.57,89.24,10.76,25.68,224,0.875,bicubic
tf_efficientnet_lite4,70.43,29.57,89.12,10.88,13.01,380,0.92,bilinear
resnest50d,70.42,29.58,88.76,11.24,27.48,224,0.875,bilinear
gluon_resnet152_v1s,70.32,29.68,88.87,11.13,60.32,224,0.875,bicubic
ecaresnet101d_pruned,70.12,29.88,89.58,10.42,24.88,224,0.875,bicubic
inception_resnet_v2,70.12,29.88,88.68,11.32,55.84,299,0.8975,bicubic
gluon_seresnext101_32x4d,70.01,29.99,88.91,11.09,48.96,224,0.875,bicubic
gluon_resnet152_v1d,69.95,30.05,88.47,11.53,60.21,224,0.875,bicubic
ecaresnet50d,69.83,30.17,89.37,10.63,25.58,224,0.875,bicubic
gluon_resnext101_64x4d,69.69,30.31,88.26,11.74,83.46,224,0.875,bicubic
ssl_resnext50_32x4d,69.69,30.31,89.42,10.58,25.03,224,0.875,bilinear
tresnet_m,69.65,30.35,88.0,12.0,31.39,224,0.875,bilinear
efficientnet_b3_pruned,69.58,30.42,88.97,11.03,9.86,300,0.904,bicubic
ens_adv_inception_resnet_v2,69.52,30.48,88.5,11.5,55.84,299,0.8975,bicubic
efficientnet_b2a,69.49,30.51,88.68,11.32,9.11,288,1.0,bicubic
inception_v4,69.35,30.65,88.78,11.22,42.68,299,0.875,bicubic
seresnext101_32x4d,69.34,30.66,88.05,11.95,48.96,224,0.875,bilinear
ecaresnetlight,69.33,30.67,89.22,10.78,30.16,224,0.875,bicubic
gluon_resnet152_v1c,69.13,30.87,87.89,12.11,60.21,224,0.875,bicubic
mixnet_xl,69.08,30.92,88.31,11.69,11.9,224,0.875,bicubic
efficientnet_b2,69.0,31.0,88.62,11.38,9.11,260,0.875,bicubic
gluon_resnet101_v1d,68.99,31.01,88.08,11.92,44.57,224,0.875,bicubic
gluon_xception65,68.98,31.02,88.32,11.68,39.92,299,0.875,bicubic
gluon_resnext101_32x4d,68.96,31.04,88.34,11.66,44.18,224,0.875,bicubic
tf_efficientnet_b2_ap,68.93,31.07,88.34,11.66,9.11,260,0.89,bicubic
gluon_resnet152_v1b,68.81,31.19,87.71,12.29,60.19,224,0.875,bicubic
dpn131,68.76,31.24,87.48,12.52,79.25,224,0.875,bicubic
resnext50d_32x4d,68.75,31.25,88.31,11.69,25.05,224,0.875,bicubic
tf_efficientnet_b2,68.75,31.25,87.95,12.05,9.11,260,0.89,bicubic
gluon_resnet101_v1s,68.72,31.28,87.9,12.1,44.67,224,0.875,bicubic
dpn107,68.71,31.29,88.13,11.87,86.92,224,0.875,bicubic
gluon_seresnext50_32x4d,68.67,31.33,88.32,11.68,27.56,224,0.875,bicubic
hrnet_w64,68.63,31.37,88.07,11.93,128.06,224,0.875,bilinear
resnext50_32x4d,68.61,31.39,87.57,12.43,25.03,224,0.875,bicubic
dpn98,68.58,31.42,87.66,12.34,61.57,224,0.875,bicubic
ssl_resnet50,68.42,31.58,88.58,11.42,25.56,224,0.875,bilinear
ecaresnet50d_pruned,68.39,31.61,88.37,11.63,19.94,224,0.875,bicubic
skresnext50_32x4d,68.39,31.61,87.59,12.41,27.48,224,0.875,bicubic
dla102x2,68.34,31.66,87.87,12.13,41.75,224,0.875,bilinear
efficientnet_b2_pruned,68.3,31.7,88.1,11.9,8.31,260,0.89,bicubic
gluon_resnext50_32x4d,68.28,31.72,87.32,12.68,25.03,224,0.875,bicubic
tf_efficientnet_lite3,68.23,31.77,87.72,12.28,8.2,300,0.904,bilinear
ese_vovnet39b,68.19,31.81,88.26,11.74,24.57,224,0.875,bicubic
tf_efficientnet_el,68.18,31.82,88.35,11.65,10.59,300,0.904,bicubic
dpn92,68.01,31.99,87.59,12.41,37.67,224,0.875,bicubic
gluon_resnet50_v1d,67.91,32.09,87.12,12.88,25.58,224,0.875,bicubic
seresnext50_32x4d,67.87,32.13,87.62,12.38,27.56,224,0.875,bilinear
resnext101_32x8d,67.85,32.15,87.48,12.52,88.79,224,0.875,bilinear
hrnet_w44,67.77,32.23,87.53,12.47,67.06,224,0.875,bilinear
hrnet_w48,67.77,32.23,87.42,12.58,77.47,224,0.875,bilinear
tf_efficientnet_b0_ns,67.72,32.28,88.08,11.92,5.29,224,0.875,bicubic
xception,67.67,32.33,87.57,12.43,22.86,299,0.8975,bicubic
dla169,67.61,32.39,87.56,12.44,53.99,224,0.875,bilinear
gluon_inception_v3,67.59,32.41,87.46,12.54,23.83,299,0.875,bicubic
hrnet_w40,67.59,32.41,87.13,12.87,57.56,224,0.875,bilinear
gluon_resnet101_v1c,67.56,32.44,87.16,12.84,44.57,224,0.875,bicubic
seresnet152,67.55,32.45,87.39,12.61,66.82,224,0.875,bilinear
res2net50_26w_8s,67.53,32.47,87.27,12.73,48.4,224,0.875,bilinear
tf_efficientnet_b1_ap,67.52,32.48,87.77,12.23,7.79,240,0.882,bicubic
tf_efficientnet_cc_b1_8e,67.48,32.52,87.31,12.69,39.72,240,0.882,bicubic
gluon_resnet101_v1b,67.45,32.55,87.23,12.77,44.55,224,0.875,bicubic
res2net101_26w_4s,67.45,32.55,87.01,12.99,45.21,224,0.875,bilinear
resnet50,67.44,32.56,87.42,12.58,25.56,224,0.875,bicubic
resnetblur50,67.44,32.56,87.43,12.57,25.56,224,0.875,bicubic
resnest26d,67.21,32.79,87.18,12.82,17.07,224,0.875,bilinear
efficientnet_b1,67.16,32.84,87.15,12.85,7.79,240,0.875,bicubic
seresnet101,67.15,32.85,87.05,12.95,49.33,224,0.875,bilinear
gluon_resnet50_v1s,67.1,32.9,86.86,13.14,25.68,224,0.875,bicubic
dla60x,67.08,32.92,87.17,12.83,17.65,224,0.875,bilinear
dla60_res2net,67.03,32.97,87.14,12.86,21.15,224,0.875,bilinear
resnet152,67.02,32.98,87.57,12.43,60.19,224,0.875,bilinear
dla102x,67.0,33.0,86.77,13.23,26.77,224,0.875,bilinear
mixnet_l,66.97,33.03,86.94,13.06,7.33,224,0.875,bicubic
res2net50_26w_6s,66.91,33.09,86.9,13.1,37.05,224,0.875,bilinear
efficientnet_es,66.89,33.11,86.73,13.27,5.44,224,0.875,bicubic
tf_efficientnet_b1,66.89,33.11,87.04,12.96,7.79,240,0.882,bicubic
tf_efficientnet_em,66.87,33.13,86.98,13.02,6.9,240,0.882,bicubic
hrnet_w32,66.79,33.21,87.29,12.71,41.23,224,0.875,bilinear
tf_mixnet_l,66.78,33.22,86.46,13.54,7.33,224,0.875,bicubic
hrnet_w30,66.76,33.24,86.79,13.21,37.71,224,0.875,bilinear
selecsls60b,66.72,33.28,86.54,13.46,32.77,224,0.875,bicubic
wide_resnet101_2,66.68,33.32,87.04,12.96,126.89,224,0.875,bilinear
wide_resnet50_2,66.65,33.35,86.81,13.19,68.88,224,0.875,bilinear
dla60_res2next,66.64,33.36,87.02,12.98,17.33,224,0.875,bilinear
adv_inception_v3,66.6,33.4,86.56,13.44,23.83,299,0.875,bicubic
dla102,66.55,33.45,86.91,13.09,33.73,224,0.875,bilinear
gluon_resnet50_v1c,66.54,33.46,86.16,13.84,25.58,224,0.875,bicubic
tf_inception_v3,66.42,33.58,86.68,13.32,23.83,299,0.875,bicubic
efficientnet_b0,66.25,33.75,85.95,14.05,5.29,224,0.875,bicubic
seresnet50,66.24,33.76,86.33,13.67,28.09,224,0.875,bilinear
selecsls60,66.22,33.78,86.33,13.67,30.67,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,66.21,33.79,86.22,13.78,24.01,224,0.875,bicubic
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
res2net50_26w_4s,66.17,33.83,86.6,13.4,25.7,224,0.875,bilinear
inception_v3,66.12,33.88,86.34,13.66,23.83,299,0.875,bicubic
efficientnet_b1_pruned,66.08,33.92,86.58,13.42,6.33,240,0.882,bicubic
gluon_resnet50_v1b,66.04,33.96,86.27,13.73,25.56,224,0.875,bicubic
res2net50_14w_8s,66.02,33.98,86.24,13.76,25.06,224,0.875,bilinear
densenet161,65.85,34.15,86.46,13.54,28.68,224,0.875,bicubic
res2next50,65.85,34.15,85.83,14.17,24.67,224,0.875,bilinear
seresnext26tn_32x4d,65.85,34.15,85.68,14.32,16.81,224,0.875,bicubic
skresnet34,65.77,34.23,85.96,14.04,22.28,224,0.875,bicubic
resnet101,65.68,34.32,85.98,14.02,44.55,224,0.875,bilinear
dpn68b,65.6,34.4,85.94,14.06,12.61,224,0.875,bicubic
seresnext26t_32x4d,65.6,34.4,86.09,13.91,16.82,224,0.875,bicubic
selecsls42b,65.59,34.41,85.83,14.17,32.46,224,0.875,bicubic
tf_efficientnet_b0_ap,65.49,34.51,85.55,14.45,5.29,224,0.875,bicubic
seresnext26d_32x4d,65.42,34.58,85.97,14.03,16.81,224,0.875,bicubic
tf_efficientnet_lite2,65.39,34.61,86.03,13.97,6.09,260,0.89,bicubic
res2net50_48w_2s,65.32,34.68,85.96,14.04,25.29,224,0.875,bilinear
densenetblur121d,65.3,34.7,85.71,14.29,8.0,224,0.875,bicubic
densenet201,65.28,34.72,85.67,14.33,20.01,224,0.875,bicubic
tf_efficientnet_es,65.24,34.76,85.54,14.46,5.44,224,0.875,bicubic
dla60,65.22,34.78,85.75,14.25,22.33,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,65.13,34.87,85.13,14.87,13.31,224,0.875,bicubic
mobilenetv2_120d,65.04,34.96,85.99,14.01,5.83,224,0.875,bicubic
seresnext26_32x4d,65.04,34.96,85.65,14.35,16.79,224,0.875,bicubic
hrnet_w18,64.91,35.09,85.75,14.25,21.3,224,0.875,bilinear
densenet169,64.78,35.22,85.25,14.75,14.15,224,0.875,bicubic
mixnet_m,64.69,35.31,85.47,14.53,5.01,224,0.875,bicubic
resnet26d,64.63,35.37,85.12,14.88,16.01,224,0.875,bicubic
tf_efficientnet_lite1,64.37,35.63,85.49,14.51,5.42,240,0.882,bicubic
tf_efficientnet_b0,64.29,35.71,85.25,14.75,5.29,224,0.875,bicubic
tf_mixnet_m,64.27,35.73,85.09,14.91,5.01,224,0.875,bicubic
dpn68,64.22,35.78,85.18,14.82,12.61,224,0.875,bicubic
mobilenetv2_140,64.05,35.95,85.02,14.98,6.11,224,0.875,bicubic
densenet121,63.74,36.26,84.63,15.37,7.98,224,0.875,bicubic
resnest14d,63.6,36.4,84.22,15.78,10.61,224,0.875,bilinear
tf_mixnet_s,63.59,36.41,84.27,15.73,4.13,224,0.875,bicubic
resnet26,63.45,36.55,84.27,15.73,16.0,224,0.875,bicubic
mixnet_s,63.38,36.62,84.71,15.29,4.13,224,0.875,bicubic
mobilenetv3_large_100,63.36,36.64,84.08,15.92,5.48,224,0.875,bicubic
tv_resnet50,63.33,36.67,84.65,15.35,25.56,224,0.875,bilinear
mobilenetv3_rw,63.23,36.77,84.52,15.48,5.48,224,0.875,bicubic
semnasnet_100,63.12,36.88,84.53,15.47,3.89,224,0.875,bicubic
tv_densenet121,62.94,37.06,84.26,15.74,7.98,224,0.875,bicubic
seresnet34,62.89,37.11,84.22,15.78,21.96,224,0.875,bilinear
hrnet_w18_small_v2,62.83,37.17,83.97,16.03,15.6,224,0.875,bilinear
mobilenetv2_110d,62.82,37.18,84.48,15.52,4.52,224,0.875,bicubic
resnet34,62.82,37.18,84.12,15.88,21.8,224,0.875,bilinear
swsl_resnet18,62.73,37.27,84.3,15.7,11.69,224,0.875,bilinear
tf_efficientnet_lite0,62.58,37.42,84.25,15.75,4.65,224,0.875,bicubic
gluon_resnet34_v1b,62.56,37.44,84.0,16.0,21.8,224,0.875,bicubic
dla34,62.51,37.49,83.92,16.08,15.78,224,0.875,bilinear
tf_mobilenetv3_large_100,62.47,37.53,83.96,16.04,5.48,224,0.875,bilinear
fbnetc_100,62.43,37.57,83.39,16.61,5.57,224,0.875,bilinear
mnasnet_100,61.91,38.09,83.71,16.29,4.38,224,0.875,bicubic
ssl_resnet18,61.49,38.51,83.33,16.67,11.69,224,0.875,bilinear
spnasnet_100,61.21,38.79,82.77,17.23,4.42,224,0.875,bilinear
tv_resnet34,61.2,38.8,82.72,17.28,21.8,224,0.875,bilinear
skresnet18,60.85,39.15,82.88,17.12,11.96,224,0.875,bicubic
tf_mobilenetv3_large_075,60.38,39.62,81.96,18.04,3.99,224,0.875,bilinear
mobilenetv2_100,60.16,39.84,82.24,17.76,3.5,224,0.875,bicubic
seresnet18,59.81,40.19,81.68,18.32,11.78,224,0.875,bicubic
tf_mobilenetv3_large_minimal_100,59.07,40.93,81.14,18.86,3.92,224,0.875,bilinear
hrnet_w18_small,58.97,41.03,81.34,18.66,13.19,224,0.875,bilinear
gluon_resnet18_v1b,58.32,41.68,80.96,19.04,11.69,224,0.875,bicubic
resnet18,57.18,42.82,80.19,19.81,11.69,224,0.875,bilinear
dla60x_c,56.02,43.98,78.96,21.04,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,54.51,45.49,77.08,22.92,2.54,224,0.875,bilinear
dla46x_c,53.08,46.92,76.84,23.16,1.08,224,0.875,bilinear
dla46_c,52.2,47.8,75.68,24.32,1.31,224,0.875,bilinear
tf_mobilenetv3_small_075,52.15,47.85,75.46,24.54,2.04,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,49.53,50.47,73.05,26.95,2.04,224,0.875,bilinear
model,rank_diff,top1,top1_diff,top1_err,top5,top5_diff,top5_err,param_count,img_size,cropt_pct,interpolation
tf_efficientnet_l2_ns_475,+1,80.470,-7.764,19.530,95.730,-2.816,4.270,480.31,475,0.936,bicubic
tf_efficientnet_l2_ns,-1,80.250,-8.102,19.750,95.850,-2.798,4.150,480.31,800,0.960,bicubic
tf_efficientnet_b7_ns,=,78.520,-8.318,21.480,94.370,-3.724,5.630,66.35,600,0.949,bicubic
tf_efficientnet_b6_ns,=,77.280,-9.182,22.720,93.890,-3.994,6.110,43.04,528,0.942,bicubic
ig_resnext101_32x48d,+1,76.870,-8.572,23.130,93.320,-4.252,6.680,828.41,224,0.875,bilinear
ig_resnext101_32x32d,+5,76.840,-8.252,23.160,93.190,-4.246,6.810,468.53,224,0.875,bilinear
tf_efficientnet_b5_ns,-2,76.820,-9.260,23.180,93.580,-4.174,6.420,30.39,456,0.934,bicubic
tf_efficientnet_b7_ap,+2,76.090,-9.028,23.910,92.970,-4.282,7.030,66.35,600,0.949,bicubic
tf_efficientnet_b8_ap,-1,76.090,-9.278,23.910,92.730,-4.564,7.270,87.41,672,0.954,bicubic
ig_resnext101_32x16d,+7,75.710,-8.466,24.290,92.900,-4.296,7.100,194.03,224,0.875,bilinear
tf_efficientnet_b4_ns,-2,75.690,-9.468,24.310,93.040,-4.428,6.960,19.34,380,0.922,bicubic
swsl_resnext101_32x8d,+2,75.450,-8.844,24.550,92.750,-4.424,7.250,88.79,224,0.875,bilinear
tf_efficientnet_b6_ap,=,75.380,-9.406,24.620,92.440,-4.698,7.560,43.04,528,0.942,bicubic
tf_efficientnet_b8,-7,74.930,-10.440,25.070,92.320,-5.072,7.680,87.41,672,0.954,bicubic
tf_efficientnet_b7,-3,74.720,-10.212,25.280,92.220,-4.988,7.780,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,-1,74.590,-9.664,25.410,91.990,-4.986,8.010,30.39,456,0.934,bicubic
swsl_resnext101_32x4d,+7,74.150,-9.084,25.850,91.990,-4.766,8.010,44.18,224,0.875,bilinear
swsl_resnext101_32x16d,+4,74.010,-9.328,25.990,92.170,-4.682,7.830,194.03,224,0.875,bilinear
resnest200e,+1,73.930,-9.904,26.070,91.580,-5.258,8.420,70.20,320,0.875,bilinear
tf_efficientnet_b6,-2,73.900,-10.212,26.100,91.750,-5.134,8.250,43.04,528,0.942,bicubic
tf_efficientnet_b3_ns,-2,73.870,-10.184,26.130,91.860,-5.052,8.140,12.23,300,0.904,bicubic
ig_resnext101_32x8d,+7,73.660,-9.028,26.340,92.150,-4.482,7.850,88.79,224,0.875,bilinear
tf_efficientnet_b5,-2,73.540,-10.276,26.460,91.460,-5.290,8.540,30.39,456,0.934,bicubic
resnest269e,-8,73.460,-10.726,26.540,91.680,-5.242,8.320,110.93,416,0.875,bilinear
tf_efficientnet_b4_ap,-2,72.890,-10.358,27.110,90.980,-5.408,9.020,19.34,380,0.922,bicubic
swsl_resnext50_32x4d,+7,72.580,-9.600,27.420,90.840,-5.388,9.160,25.03,224,0.875,bilinear
resnest101e,=,72.550,-10.340,27.450,90.810,-5.514,9.190,48.28,256,0.875,bilinear
tresnet_xl_448,-3,72.550,-10.498,27.450,90.310,-5.864,9.690,78.44,448,0.875,bilinear
pnasnet5large,-1,72.370,-10.370,27.630,90.260,-5.780,9.740,86.06,331,0.875,bicubic
nasnetalarge,=,72.310,-10.248,27.690,90.510,-5.526,9.490,88.75,331,0.875,bicubic
tf_efficientnet_b4,-5,72.280,-10.736,27.720,90.600,-5.698,9.400,19.34,380,0.922,bicubic
tf_efficientnet_b2_ns,-1,72.270,-10.110,27.730,91.090,-5.162,8.910,9.11,260,0.890,bicubic
swsl_resnet50,+15,71.690,-9.490,28.310,90.510,-5.476,9.490,25.56,224,0.875,bilinear
tresnet_xl,+1,71.650,-10.420,28.350,89.630,-6.298,10.370,78.44,224,0.875,bilinear
tresnet_l_448,-3,71.600,-10.668,28.400,90.060,-5.918,9.940,55.99,448,0.875,bilinear
ecaresnet101d,-2,71.500,-10.666,28.500,90.310,-5.742,9.690,44.57,224,0.875,bicubic
ssl_resnext101_32x8d,+4,71.490,-10.136,28.510,90.470,-5.568,9.530,88.79,224,0.875,bilinear
ssl_resnext101_32x16d,-1,71.400,-10.436,28.600,90.550,-5.544,9.450,194.03,224,0.875,bilinear
tresnet_m_448,=,71.000,-10.712,29.000,88.680,-6.890,11.320,31.39,448,0.875,bilinear
resnest50d_4s2x40d,+9,70.940,-10.174,29.060,89.710,-5.858,10.290,30.42,224,0.875,bicubic
tf_efficientnet_b3_ap,-3,70.920,-10.908,29.080,89.430,-6.194,10.570,12.23,300,0.904,bicubic
efficientnet_b3a,-6,70.870,-11.004,29.130,89.720,-6.120,10.280,12.23,320,1.000,bicubic
tf_efficientnet_b1_ns,+2,70.850,-10.536,29.150,90.110,-5.628,9.890,7.79,240,0.882,bicubic
tresnet_l,=,70.830,-10.658,29.170,89.610,-6.018,10.390,55.99,224,0.875,bilinear
efficientnet_b3,-2,70.760,-10.738,29.240,89.840,-5.878,10.160,12.23,300,0.904,bicubic
tf_efficientnet_b3,-6,70.620,-11.020,29.380,89.440,-6.282,10.560,12.23,300,0.904,bicubic
gluon_senet154,=,70.600,-10.624,29.400,88.920,-6.436,11.080,115.09,224,0.875,bicubic
ssl_resnext101_32x4d,+5,70.500,-10.428,29.500,89.760,-5.968,10.240,44.18,224,0.875,bilinear
senet154,-3,70.480,-10.824,29.520,88.990,-6.508,11.010,115.09,224,0.875,bilinear
gluon_seresnext101_64x4d,+5,70.440,-10.450,29.560,89.350,-5.954,10.650,88.23,224,0.875,bicubic
resnest50d_1s4x24d,=,70.430,-10.560,29.570,89.240,-6.082,10.760,25.68,224,0.875,bicubic
tf_efficientnet_lite4,-10,70.430,-11.098,29.570,89.120,-6.548,10.880,13.01,380,0.920,bilinear
resnest50d,-1,70.420,-10.538,29.580,88.760,-6.622,11.240,27.48,224,0.875,bilinear
gluon_resnet152_v1s,-4,70.320,-10.692,29.680,88.870,-6.546,11.130,60.32,224,0.875,bicubic
ecaresnet101d_pruned,+3,70.120,-10.688,29.880,89.580,-6.048,10.420,24.88,224,0.875,bicubic
inception_resnet_v2,+9,70.120,-10.340,29.880,88.680,-6.630,11.320,55.84,299,0.897,bicubic
gluon_seresnext101_32x4d,-3,70.010,-10.892,29.990,88.910,-6.384,11.090,48.96,224,0.875,bicubic
gluon_resnet152_v1d,+6,69.950,-10.520,30.050,88.470,-6.736,11.530,60.21,224,0.875,bicubic
ecaresnet50d,+2,69.830,-10.774,30.170,89.370,-5.952,10.630,25.58,224,0.875,bicubic
gluon_resnext101_64x4d,+2,69.690,-10.912,30.310,88.260,-6.734,11.740,83.46,224,0.875,bicubic
ssl_resnext50_32x4d,+11,69.690,-10.638,30.310,89.420,-5.984,10.580,25.03,224,0.875,bilinear
tresnet_m,-3,69.650,-11.146,30.350,88.000,-6.856,12.000,31.39,224,0.875,bilinear
efficientnet_b3_pruned,-7,69.580,-11.276,30.420,88.970,-6.270,11.030,9.86,300,0.904,bicubic
ens_adv_inception_resnet_v2,+19,69.520,-10.456,30.480,88.500,-6.446,11.500,55.84,299,0.897,bicubic
efficientnet_b2a,-5,69.490,-11.118,30.510,88.680,-6.630,11.320,9.11,288,1.000,bicubic
inception_v4,+13,69.350,-10.806,30.650,88.780,-6.194,11.220,42.68,299,0.875,bicubic
seresnext101_32x4d,+10,69.340,-10.896,30.660,88.050,-6.978,11.950,48.96,224,0.875,bilinear
ecaresnetlight,-2,69.330,-11.124,30.670,89.220,-6.036,10.780,30.16,224,0.875,bicubic
gluon_resnet152_v1c,+16,69.130,-10.786,30.870,87.890,-6.952,12.110,60.21,224,0.875,bicubic
mixnet_xl,-7,69.080,-11.398,30.920,88.310,-6.622,11.690,11.90,224,0.875,bicubic
efficientnet_b2,-2,69.000,-11.402,31.000,88.620,-6.456,11.380,9.11,260,0.875,bicubic
gluon_resnet101_v1d,-4,68.990,-11.434,31.010,88.080,-6.940,11.920,44.57,224,0.875,bicubic
gluon_xception65,+24,68.980,-10.624,31.020,88.320,-6.428,11.680,39.92,299,0.875,bicubic
gluon_resnext101_32x4d,-3,68.960,-11.374,31.040,88.340,-6.586,11.660,44.18,224,0.875,bicubic
tf_efficientnet_b2_ap,-2,68.930,-11.376,31.070,88.340,-6.688,11.660,9.11,260,0.890,bicubic
gluon_resnet152_v1b,+18,68.810,-10.882,31.190,87.710,-7.028,12.290,60.19,224,0.875,bicubic
dpn131,+12,68.760,-11.068,31.240,87.480,-7.224,12.520,79.25,224,0.875,bicubic
resnext50d_32x4d,+17,68.750,-10.924,31.250,88.310,-6.558,11.690,25.05,224,0.875,bicubic
tf_efficientnet_b2,+2,68.750,-11.340,31.250,87.950,-6.956,12.050,9.11,260,0.890,bicubic
gluon_resnet101_v1s,-6,68.720,-11.580,31.280,87.900,-7.250,12.100,44.67,224,0.875,bicubic
dpn107,-3,68.710,-11.454,31.290,88.130,-6.782,11.870,86.92,224,0.875,bicubic
gluon_seresnext50_32x4d,+4,68.670,-11.242,31.330,88.320,-6.498,11.680,27.56,224,0.875,bicubic
hrnet_w64,+17,68.630,-10.842,31.370,88.070,-6.580,11.930,128.06,224,0.875,bilinear
resnext50_32x4d,+7,68.610,-11.152,31.390,87.570,-7.030,12.430,25.03,224,0.875,bicubic
dpn98,+11,68.580,-11.056,31.420,87.660,-6.934,12.340,61.57,224,0.875,bicubic
ssl_resnet50,+24,68.420,-10.808,31.580,88.580,-6.252,11.420,25.56,224,0.875,bilinear
ecaresnet50d_pruned,+5,68.390,-11.328,31.610,88.370,-6.520,11.630,19.94,224,0.875,bicubic
skresnext50_32x4d,-8,68.390,-11.760,31.610,87.590,-7.054,12.410,27.48,224,0.875,bicubic
dla102x2,+12,68.340,-11.112,31.660,87.870,-6.774,12.130,41.75,224,0.875,bilinear
efficientnet_b2_pruned,-6,68.300,-11.618,31.700,88.100,-6.748,11.900,8.31,260,0.890,bicubic
gluon_resnext50_32x4d,+11,68.280,-11.076,31.720,87.320,-7.104,12.680,25.03,224,0.875,bicubic
tf_efficientnet_lite3,-2,68.230,-11.582,31.770,87.720,-7.194,12.280,8.20,300,0.904,bilinear
ese_vovnet39b,+10,68.190,-11.130,31.810,88.260,-6.450,11.740,24.57,224,0.875,bicubic
tf_efficientnet_el,-27,68.180,-12.268,31.820,88.350,-6.810,11.650,10.59,300,0.904,bicubic
dpn92,-13,68.010,-12.006,31.990,87.590,-7.248,12.410,37.67,224,0.875,bicubic
gluon_resnet50_v1d,+20,67.910,-11.164,32.090,87.120,-7.356,12.880,25.58,224,0.875,bicubic
seresnext50_32x4d,+18,67.870,-11.206,32.130,87.620,-6.814,12.380,27.56,224,0.875,bilinear
resnext101_32x8d,+6,67.850,-11.462,32.150,87.480,-7.046,12.520,88.79,224,0.875,bilinear
hrnet_w44,+23,67.770,-11.124,32.230,87.530,-6.840,12.470,67.06,224,0.875,bilinear
hrnet_w48,+5,67.770,-11.540,32.230,87.420,-7.098,12.580,77.47,224,0.875,bilinear
tf_efficientnet_b0_ns,+32,67.720,-10.932,32.280,88.080,-6.288,11.920,5.29,224,0.875,bicubic
xception,+16,67.670,-11.378,32.330,87.570,-6.822,12.430,22.86,299,0.897,bicubic
dla169,+26,67.610,-11.100,32.390,87.560,-6.778,12.440,53.99,224,0.875,bilinear
gluon_inception_v3,+22,67.590,-11.214,32.410,87.460,-6.920,12.540,23.83,299,0.875,bicubic
hrnet_w40,+16,67.590,-11.344,32.410,87.130,-7.336,12.870,57.56,224,0.875,bilinear
gluon_resnet101_v1c,-7,67.560,-11.984,32.440,87.160,-7.426,12.840,44.57,224,0.875,bicubic
seresnet152,+25,67.550,-11.108,32.450,87.390,-6.984,12.610,66.82,224,0.875,bilinear
res2net50_26w_8s,+4,67.530,-11.680,32.470,87.270,-7.092,12.730,48.40,224,0.875,bilinear
tf_efficientnet_b1_ap,=,67.520,-11.758,32.480,87.770,-6.538,12.230,7.79,240,0.882,bicubic
tf_efficientnet_cc_b1_8e,-3,67.480,-11.818,32.520,87.310,-7.054,12.690,39.72,240,0.882,bicubic
gluon_resnet101_v1b,-5,67.450,-11.854,32.550,87.230,-7.294,12.770,44.55,224,0.875,bicubic
res2net101_26w_4s,+2,67.450,-11.746,32.550,87.010,-7.430,12.990,45.21,224,0.875,bilinear
resnet50,+6,67.440,-11.592,32.560,87.420,-6.964,12.580,25.56,224,0.875,bicubic
resnetblur50,-6,67.440,-11.850,32.560,87.430,-7.202,12.570,25.56,224,0.875,bicubic
resnest26d,+22,67.210,-11.272,32.790,87.180,-7.110,12.820,17.07,224,0.875,bilinear
efficientnet_b1,+14,67.160,-11.538,32.840,87.150,-7.002,12.850,7.79,240,0.875,bicubic
seresnet101,+26,67.150,-11.246,32.850,87.050,-7.208,12.950,49.33,224,0.875,bilinear
gluon_resnet50_v1s,+10,67.100,-11.612,32.900,86.860,-7.382,13.140,25.68,224,0.875,bicubic
dla60x,+26,67.080,-11.162,32.920,87.170,-6.852,12.830,17.65,224,0.875,bilinear
dla60_res2net,+18,67.030,-11.442,32.970,87.140,-7.064,12.860,21.15,224,0.875,bilinear
resnet152,+23,67.020,-11.292,32.980,87.570,-6.476,12.430,60.19,224,0.875,bilinear
dla102x,+13,67.000,-11.508,33.000,86.770,-7.464,13.230,26.77,224,0.875,bilinear
mixnet_l,-3,66.970,-12.006,33.030,86.940,-7.244,13.060,7.33,224,0.875,bicubic
res2net50_26w_6s,+10,66.910,-11.664,33.090,86.900,-7.226,13.100,37.05,224,0.875,bilinear
efficientnet_es,+26,66.890,-11.164,33.110,86.730,-7.200,13.270,5.44,224,0.875,bicubic
tf_efficientnet_b1,-1,66.890,-11.942,33.110,87.040,-7.156,12.960,7.79,240,0.882,bicubic
tf_efficientnet_em,+4,66.870,-11.828,33.130,86.980,-7.340,13.020,6.90,240,0.882,bicubic
hrnet_w32,+13,66.790,-11.658,33.210,87.290,-6.898,12.710,41.23,224,0.875,bilinear
tf_mixnet_l,-2,66.780,-11.990,33.220,86.460,-7.544,13.540,7.33,224,0.875,bicubic
hrnet_w30,+18,66.760,-11.436,33.240,86.790,-7.430,13.210,37.71,224,0.875,bilinear
selecsls60b,+11,66.720,-11.698,33.280,86.540,-7.626,13.460,32.77,224,0.875,bicubic
wide_resnet101_2,-8,66.680,-12.166,33.320,87.040,-7.244,12.960,126.89,224,0.875,bilinear
wide_resnet50_2,+6,66.650,-11.818,33.350,86.810,-7.276,13.190,68.88,224,0.875,bilinear
dla60_res2next,+6,66.640,-11.808,33.360,87.020,-7.124,12.980,17.33,224,0.875,bilinear
adv_inception_v3,+30,66.600,-10.980,33.400,86.560,-7.164,13.440,23.83,299,0.875,bicubic
dla102,+16,66.550,-11.476,33.450,86.910,-7.040,13.090,33.73,224,0.875,bilinear
gluon_resnet50_v1c,+16,66.540,-11.470,33.460,86.160,-7.828,13.840,25.58,224,0.875,bicubic
tf_inception_v3,+21,66.420,-11.436,33.580,86.680,-6.964,13.320,23.83,299,0.875,bicubic
efficientnet_b0,+22,66.250,-11.442,33.750,85.950,-7.582,14.050,5.29,224,0.875,bicubic
seresnet50,+22,66.240,-11.396,33.760,86.330,-7.422,13.670,28.09,224,0.875,bilinear
selecsls60,+15,66.220,-11.762,33.780,86.330,-7.502,13.670,30.67,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,+16,66.210,-11.698,33.790,86.220,-7.436,13.780,24.01,224,0.875,bicubic
tv_resnext50_32x4d,+20,66.180,-11.438,33.820,86.040,-7.658,13.960,25.03,224,0.875,bilinear
res2net50_26w_4s,+13,66.170,-11.776,33.830,86.600,-7.252,13.400,25.70,224,0.875,bilinear
inception_v3,+25,66.120,-11.316,33.880,86.340,-7.136,13.660,23.83,299,0.875,bicubic
efficientnet_b1_pruned,=,66.080,-12.162,33.920,86.580,-7.252,13.420,6.33,240,0.882,bicubic
gluon_resnet50_v1b,+19,66.040,-11.538,33.960,86.270,-7.448,13.730,25.56,224,0.875,bicubic
res2net50_14w_8s,+2,66.020,-12.132,33.980,86.240,-7.602,13.760,25.06,224,0.875,bilinear
densenet161,+23,65.850,-11.498,34.150,86.460,-7.188,13.540,28.68,224,0.875,bicubic
res2next50,-3,65.850,-12.392,34.150,85.830,-8.062,14.170,24.67,224,0.875,bilinear
seresnext26tn_32x4d,+3,65.850,-12.140,34.150,85.680,-8.068,14.320,16.81,224,0.875,bicubic
skresnet34,+32,65.770,-11.140,34.230,85.960,-7.356,14.040,22.28,224,0.875,bicubic
resnet101,+18,65.680,-11.694,34.320,85.980,-7.566,14.020,44.55,224,0.875,bilinear
dpn68b,+13,65.600,-11.914,34.400,85.940,-7.882,14.060,12.61,224,0.875,bicubic
seresnext26t_32x4d,=,65.600,-12.388,34.400,86.090,-7.616,13.910,16.82,224,0.875,bicubic
selecsls42b,+22,65.590,-11.586,34.410,85.830,-7.562,14.170,32.46,224,0.875,bicubic
tf_efficientnet_b0_ap,+23,65.490,-11.594,34.510,85.550,-7.704,14.450,5.29,224,0.875,bicubic
seresnext26d_32x4d,+6,65.420,-12.184,34.580,85.970,-7.642,14.030,16.81,224,0.875,bicubic
tf_efficientnet_lite2,+10,65.390,-12.070,34.610,86.030,-7.716,13.970,6.09,260,0.890,bicubic
res2net50_48w_2s,+8,65.320,-12.194,34.680,85.960,-7.588,14.040,25.29,224,0.875,bilinear
densenetblur121d,+28,65.300,-11.276,34.700,85.710,-7.480,14.290,8.00,224,0.875,bicubic
densenet201,+13,65.280,-12.010,34.720,85.670,-7.808,14.330,20.01,224,0.875,bicubic
tf_efficientnet_es,+13,65.240,-12.024,34.760,85.540,-8.060,14.460,5.44,224,0.875,bicubic
dla60,+17,65.220,-11.804,34.780,85.750,-7.558,14.250,22.33,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,+8,65.130,-12.174,34.870,85.130,-8.202,14.870,13.31,224,0.875,bicubic
mobilenetv2_120d,+8,65.040,-12.254,34.960,85.990,-7.512,14.010,5.83,224,0.875,bicubic
seresnext26_32x4d,+12,65.040,-12.060,34.960,85.650,-7.660,14.350,16.79,224,0.875,bicubic
hrnet_w18,+18,64.910,-11.846,35.090,85.750,-7.692,14.250,21.30,224,0.875,bilinear
densenet169,+26,64.780,-11.132,35.220,85.250,-7.774,14.750,14.15,224,0.875,bicubic
mixnet_m,+7,64.690,-12.566,35.310,85.470,-7.948,14.530,5.01,224,0.875,bicubic
resnet26d,+16,64.630,-12.050,35.370,85.120,-8.046,14.880,16.01,224,0.875,bicubic
tf_efficientnet_lite1,+16,64.370,-12.268,35.630,85.490,-7.742,14.510,5.42,240,0.882,bicubic
tf_efficientnet_b0,+12,64.290,-12.550,35.710,85.250,-7.976,14.750,5.29,224,0.875,bicubic
tf_mixnet_m,+8,64.270,-12.680,35.730,85.090,-8.066,14.910,5.01,224,0.875,bicubic
dpn68,+17,64.220,-12.086,35.780,85.180,-7.790,14.820,12.61,224,0.875,bicubic
mobilenetv2_140,+14,64.050,-12.474,35.950,85.020,-7.970,14.980,6.11,224,0.875,bicubic
densenet121,+22,63.740,-11.834,36.260,84.630,-8.026,15.370,7.98,224,0.875,bicubic
resnest14d,+23,63.600,-11.904,36.400,84.220,-8.294,15.780,10.61,224,0.875,bilinear
tf_mixnet_s,+18,63.590,-12.058,36.410,84.270,-8.366,15.730,4.13,224,0.875,bicubic
resnet26,+23,63.450,-11.842,36.550,84.270,-8.300,15.730,16.00,224,0.875,bicubic
mixnet_s,+13,63.380,-12.608,36.620,84.710,-8.084,15.290,4.13,224,0.875,bicubic
mobilenetv3_large_100,+14,63.360,-12.408,36.640,84.080,-8.460,15.920,5.48,224,0.875,bicubic
tv_resnet50,+10,63.330,-12.800,36.670,84.650,-8.212,15.350,25.56,224,0.875,bilinear
mobilenetv3_rw,+14,63.230,-12.398,36.770,84.520,-8.190,15.480,5.48,224,0.875,bicubic
semnasnet_100,+17,63.120,-12.336,36.880,84.530,-8.062,15.470,3.89,224,0.875,bicubic
tv_densenet121,+26,62.940,-11.812,37.060,84.260,-7.892,15.740,7.98,224,0.875,bicubic
seresnet34,+24,62.890,-11.918,37.110,84.220,-7.906,15.780,21.96,224,0.875,bilinear
hrnet_w18_small_v2,+17,62.830,-12.296,37.170,83.970,-8.446,16.030,15.60,224,0.875,bilinear
mobilenetv2_110d,+19,62.820,-12.232,37.180,84.480,-7.700,15.520,4.52,224,0.875,bicubic
resnet34,+17,62.820,-12.292,37.180,84.120,-8.168,15.880,21.80,224,0.875,bilinear
swsl_resnet18,+30,62.730,-10.556,37.270,84.300,-7.432,15.700,11.69,224,0.875,bilinear
tf_efficientnet_lite0,+18,62.580,-12.262,37.420,84.250,-7.920,15.750,4.65,224,0.875,bicubic
gluon_resnet34_v1b,+22,62.560,-12.020,37.440,84.000,-7.988,16.000,21.80,224,0.875,bicubic
dla34,+20,62.510,-12.126,37.490,83.920,-8.144,16.080,15.78,224,0.875,bilinear
tf_mobilenetv3_large_100,+5,62.470,-13.046,37.530,83.960,-8.640,16.040,5.48,224,0.875,bilinear
fbnetc_100,+10,62.430,-12.690,37.570,83.390,-8.996,16.610,5.57,224,0.875,bilinear
mnasnet_100,+16,61.910,-12.746,38.090,83.710,-8.416,16.290,4.38,224,0.875,bicubic
ssl_resnet18,+26,61.490,-11.110,38.510,83.330,-8.086,16.670,11.69,224,0.875,bilinear
spnasnet_100,+17,61.210,-12.870,38.790,82.770,-9.062,17.230,4.42,224,0.875,bilinear
tv_resnet34,+20,61.200,-12.114,38.800,82.720,-8.700,17.280,21.80,224,0.875,bilinear
skresnet18,+21,60.850,-12.194,39.150,82.880,-8.298,17.120,11.96,224,0.875,bicubic
tf_mobilenetv3_large_075,+17,60.380,-13.062,39.620,81.960,-9.392,18.040,3.99,224,0.875,bilinear
mobilenetv2_100,+20,60.160,-12.818,39.840,82.240,-8.776,17.760,3.50,224,0.875,bicubic
seresnet18,+24,59.810,-11.948,40.190,81.680,-8.654,18.320,11.78,224,0.875,bicubic
tf_mobilenetv3_large_minimal_100,+22,59.070,-13.174,40.930,81.140,-9.496,18.860,3.92,224,0.875,bilinear
hrnet_w18_small,+20,58.970,-13.372,41.030,81.340,-9.332,18.660,13.19,224,0.875,bilinear
gluon_resnet18_v1b,+22,58.320,-12.510,41.680,80.960,-8.796,19.040,11.69,224,0.875,bicubic
resnet18,+23,57.180,-12.578,42.820,80.190,-8.888,19.810,11.69,224,0.875,bilinear
dla60x_c,+25,56.020,-11.888,43.980,78.960,-9.474,21.040,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,+23,54.510,-13.408,45.490,77.080,-10.582,22.920,2.54,224,0.875,bilinear
dla46x_c,+24,53.080,-12.900,46.920,76.840,-10.140,23.160,1.08,224,0.875,bilinear
dla46_c,+25,52.200,-12.678,47.800,75.680,-10.606,24.320,1.31,224,0.875,bilinear
tf_mobilenetv3_small_075,+23,52.150,-13.568,47.850,75.460,-10.676,24.540,2.04,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,+24,49.530,-13.368,50.470,73.050,-11.180,26.950,2.04,224,0.875,bilinear

1 model rank_diff top1 top1_diff top1_err top5 top5_diff top5_err param_count img_size cropt_pct interpolation
2 tf_efficientnet_l2_ns_475 +1 80.47 80.470 -7.764 19.53 19.530 95.73 95.730 -2.816 4.27 4.270 480.31 475 0.936 bicubic
3 tf_efficientnet_l2_ns -1 80.25 80.250 -8.102 19.75 19.750 95.85 95.850 -2.798 4.15 4.150 480.31 800 0.96 0.960 bicubic
4 tf_efficientnet_b7_ns = 78.52 78.520 -8.318 21.48 21.480 94.37 94.370 -3.724 5.63 5.630 66.35 600 0.949 bicubic
5 tf_efficientnet_b6_ns = 77.28 77.280 -9.182 22.72 22.720 93.89 93.890 -3.994 6.11 6.110 43.04 528 0.942 bicubic
6 ig_resnext101_32x48d +1 76.87 76.870 -8.572 23.13 23.130 93.32 93.320 -4.252 6.68 6.680 828.41 224 0.875 bilinear
7 ig_resnext101_32x32d +5 76.84 76.840 -8.252 23.16 23.160 93.19 93.190 -4.246 6.81 6.810 468.53 224 0.875 bilinear
8 tf_efficientnet_b5_ns -2 76.82 76.820 -9.260 23.18 23.180 93.58 93.580 -4.174 6.42 6.420 30.39 456 0.934 bicubic
9 tf_efficientnet_b7_ap +2 76.09 76.090 -9.028 23.91 23.910 92.97 92.970 -4.282 7.03 7.030 66.35 600 0.949 bicubic
10 tf_efficientnet_b8_ap -1 76.09 76.090 -9.278 23.91 23.910 92.73 92.730 -4.564 7.27 7.270 87.41 672 0.954 bicubic
11 ig_resnext101_32x16d +7 75.71 75.710 -8.466 24.29 24.290 92.9 92.900 -4.296 7.1 7.100 194.03 224 0.875 bilinear
12 tf_efficientnet_b4_ns -2 75.69 75.690 -9.468 24.31 24.310 93.04 93.040 -4.428 6.96 6.960 19.34 380 0.922 bicubic
13 swsl_resnext101_32x8d +2 75.45 75.450 -8.844 24.55 24.550 92.75 92.750 -4.424 7.25 7.250 88.79 224 0.875 bilinear
14 tf_efficientnet_b6_ap = 75.38 75.380 -9.406 24.62 24.620 92.44 92.440 -4.698 7.56 7.560 43.04 528 0.942 bicubic
15 tf_efficientnet_b8 -7 74.93 74.930 -10.440 25.07 25.070 92.32 92.320 -5.072 7.68 7.680 87.41 672 0.954 bicubic
16 tf_efficientnet_b7 -3 74.72 74.720 -10.212 25.28 25.280 92.22 92.220 -4.988 7.78 7.780 66.35 600 0.949 bicubic
17 tf_efficientnet_b5_ap -1 74.59 74.590 -9.664 25.41 25.410 91.99 91.990 -4.986 8.01 8.010 30.39 456 0.934 bicubic
18 swsl_resnext101_32x4d +7 74.15 74.150 -9.084 25.85 25.850 91.99 91.990 -4.766 8.01 8.010 44.18 224 0.875 bilinear
19 swsl_resnext101_32x16d +4 74.01 74.010 -9.328 25.99 25.990 92.17 92.170 -4.682 7.83 7.830 194.03 224 0.875 bilinear
20 resnest200e +1 73.93 73.930 -9.904 26.07 26.070 91.58 91.580 -5.258 8.42 8.420 70.2 70.20 320 0.875 bilinear
21 tf_efficientnet_b6 -2 73.9 73.900 -10.212 26.1 26.100 91.75 91.750 -5.134 8.25 8.250 43.04 528 0.942 bicubic
22 tf_efficientnet_b3_ns -2 73.87 73.870 -10.184 26.13 26.130 91.86 91.860 -5.052 8.14 8.140 12.23 300 0.904 bicubic
23 ig_resnext101_32x8d +7 73.66 73.660 -9.028 26.34 26.340 92.15 92.150 -4.482 7.85 7.850 88.79 224 0.875 bilinear
24 tf_efficientnet_b5 -2 73.54 73.540 -10.276 26.46 26.460 91.46 91.460 -5.290 8.54 8.540 30.39 456 0.934 bicubic
25 resnest269e -8 73.46 73.460 -10.726 26.54 26.540 91.68 91.680 -5.242 8.32 8.320 110.93 416 0.875 bilinear
26 tf_efficientnet_b4_ap -2 72.89 72.890 -10.358 27.11 27.110 90.98 90.980 -5.408 9.02 9.020 19.34 380 0.922 bicubic
27 swsl_resnext50_32x4d +7 72.58 72.580 -9.600 27.42 27.420 90.84 90.840 -5.388 9.16 9.160 25.03 224 0.875 bilinear
28 resnest101e = 72.55 72.550 -10.340 27.45 27.450 90.81 90.810 -5.514 9.19 9.190 48.28 256 0.875 bilinear
29 tresnet_xl_448 -3 72.55 72.550 -10.498 27.45 27.450 90.31 90.310 -5.864 9.69 9.690 78.44 448 0.875 bilinear
30 pnasnet5large -1 72.37 72.370 -10.370 27.63 27.630 90.26 90.260 -5.780 9.74 9.740 86.06 331 0.875 bicubic
31 nasnetalarge = 72.31 72.310 -10.248 27.69 27.690 90.51 90.510 -5.526 9.49 9.490 88.75 331 0.875 bicubic
32 tf_efficientnet_b4 -5 72.28 72.280 -10.736 27.72 27.720 90.6 90.600 -5.698 9.4 9.400 19.34 380 0.922 bicubic
33 tf_efficientnet_b2_ns -1 72.27 72.270 -10.110 27.73 27.730 91.09 91.090 -5.162 8.91 8.910 9.11 260 0.89 0.890 bicubic
34 swsl_resnet50 +15 71.69 71.690 -9.490 28.31 28.310 90.51 90.510 -5.476 9.49 9.490 25.56 224 0.875 bilinear
35 tresnet_xl +1 71.65 71.650 -10.420 28.35 28.350 89.63 89.630 -6.298 10.37 10.370 78.44 224 0.875 bilinear
36 tresnet_l_448 -3 71.6 71.600 -10.668 28.4 28.400 90.06 90.060 -5.918 9.94 9.940 55.99 448 0.875 bilinear
37 ecaresnet101d -2 71.5 71.500 -10.666 28.5 28.500 90.31 90.310 -5.742 9.69 9.690 44.57 224 0.875 bicubic
38 ssl_resnext101_32x8d +4 71.49 71.490 -10.136 28.51 28.510 90.47 90.470 -5.568 9.53 9.530 88.79 224 0.875 bilinear
39 ssl_resnext101_32x16d -1 71.4 71.400 -10.436 28.6 28.600 90.55 90.550 -5.544 9.45 9.450 194.03 224 0.875 bilinear
40 tresnet_m_448 = 71.0 71.000 -10.712 29.0 29.000 88.68 88.680 -6.890 11.32 11.320 31.39 448 0.875 bilinear
41 resnest50d_4s2x40d +9 70.94 70.940 -10.174 29.06 29.060 89.71 89.710 -5.858 10.29 10.290 30.42 224 0.875 bicubic
42 tf_efficientnet_b3_ap -3 70.92 70.920 -10.908 29.08 29.080 89.43 89.430 -6.194 10.57 10.570 12.23 300 0.904 bicubic
43 efficientnet_b3a -6 70.87 70.870 -11.004 29.13 29.130 89.72 89.720 -6.120 10.28 10.280 12.23 320 1.0 1.000 bicubic
44 tf_efficientnet_b1_ns +2 70.85 70.850 -10.536 29.15 29.150 90.11 90.110 -5.628 9.89 9.890 7.79 240 0.882 bicubic
45 tresnet_l = 70.83 70.830 -10.658 29.17 29.170 89.61 89.610 -6.018 10.39 10.390 55.99 224 0.875 bilinear
46 efficientnet_b3 -2 70.76 70.760 -10.738 29.24 29.240 89.84 89.840 -5.878 10.16 10.160 12.23 300 0.904 bicubic
47 tf_efficientnet_b3 -6 70.62 70.620 -11.020 29.38 29.380 89.44 89.440 -6.282 10.56 10.560 12.23 300 0.904 bicubic
48 gluon_senet154 = 70.6 70.600 -10.624 29.4 29.400 88.92 88.920 -6.436 11.08 11.080 115.09 224 0.875 bicubic
49 ssl_resnext101_32x4d +5 70.5 70.500 -10.428 29.5 29.500 89.76 89.760 -5.968 10.24 10.240 44.18 224 0.875 bilinear
50 senet154 -3 70.48 70.480 -10.824 29.52 29.520 88.99 88.990 -6.508 11.01 11.010 115.09 224 0.875 bilinear
51 gluon_seresnext101_64x4d +5 70.44 70.440 -10.450 29.56 29.560 89.35 89.350 -5.954 10.65 10.650 88.23 224 0.875 bicubic
52 resnest50d_1s4x24d = 70.43 70.430 -10.560 29.57 29.570 89.24 89.240 -6.082 10.76 10.760 25.68 224 0.875 bicubic
53 tf_efficientnet_lite4 -10 70.43 70.430 -11.098 29.57 29.570 89.12 89.120 -6.548 10.88 10.880 13.01 380 0.92 0.920 bilinear
54 resnest50d -1 70.42 70.420 -10.538 29.58 29.580 88.76 88.760 -6.622 11.24 11.240 27.48 224 0.875 bilinear
55 gluon_resnet152_v1s -4 70.32 70.320 -10.692 29.68 29.680 88.87 88.870 -6.546 11.13 11.130 60.32 224 0.875 bicubic
56 ecaresnet101d_pruned +3 70.12 70.120 -10.688 29.88 29.880 89.58 89.580 -6.048 10.42 10.420 24.88 224 0.875 bicubic
57 inception_resnet_v2 +9 70.12 70.120 -10.340 29.88 29.880 88.68 88.680 -6.630 11.32 11.320 55.84 299 0.8975 0.897 bicubic
58 gluon_seresnext101_32x4d -3 70.01 70.010 -10.892 29.99 29.990 88.91 88.910 -6.384 11.09 11.090 48.96 224 0.875 bicubic
59 gluon_resnet152_v1d +6 69.95 69.950 -10.520 30.05 30.050 88.47 88.470 -6.736 11.53 11.530 60.21 224 0.875 bicubic
60 ecaresnet50d +2 69.83 69.830 -10.774 30.17 30.170 89.37 89.370 -5.952 10.63 10.630 25.58 224 0.875 bicubic
61 gluon_resnext101_64x4d +2 69.69 69.690 -10.912 30.31 30.310 88.26 88.260 -6.734 11.74 11.740 83.46 224 0.875 bicubic
62 ssl_resnext50_32x4d +11 69.69 69.690 -10.638 30.31 30.310 89.42 89.420 -5.984 10.58 10.580 25.03 224 0.875 bilinear
63 tresnet_m -3 69.65 69.650 -11.146 30.35 30.350 88.0 88.000 -6.856 12.0 12.000 31.39 224 0.875 bilinear
64 efficientnet_b3_pruned -7 69.58 69.580 -11.276 30.42 30.420 88.97 88.970 -6.270 11.03 11.030 9.86 300 0.904 bicubic
65 ens_adv_inception_resnet_v2 +19 69.52 69.520 -10.456 30.48 30.480 88.5 88.500 -6.446 11.5 11.500 55.84 299 0.8975 0.897 bicubic
66 efficientnet_b2a -5 69.49 69.490 -11.118 30.51 30.510 88.68 88.680 -6.630 11.32 11.320 9.11 288 1.0 1.000 bicubic
67 inception_v4 +13 69.35 69.350 -10.806 30.65 30.650 88.78 88.780 -6.194 11.22 11.220 42.68 299 0.875 bicubic
68 seresnext101_32x4d +10 69.34 69.340 -10.896 30.66 30.660 88.05 88.050 -6.978 11.95 11.950 48.96 224 0.875 bilinear
69 ecaresnetlight -2 69.33 69.330 -11.124 30.67 30.670 89.22 89.220 -6.036 10.78 10.780 30.16 224 0.875 bicubic
70 gluon_resnet152_v1c +16 69.13 69.130 -10.786 30.87 30.870 87.89 87.890 -6.952 12.11 12.110 60.21 224 0.875 bicubic
71 mixnet_xl -7 69.08 69.080 -11.398 30.92 30.920 88.31 88.310 -6.622 11.69 11.690 11.9 11.90 224 0.875 bicubic
72 efficientnet_b2 -2 69.0 69.000 -11.402 31.0 31.000 88.62 88.620 -6.456 11.38 11.380 9.11 260 0.875 bicubic
73 gluon_resnet101_v1d -4 68.99 68.990 -11.434 31.01 31.010 88.08 88.080 -6.940 11.92 11.920 44.57 224 0.875 bicubic
74 gluon_xception65 +24 68.98 68.980 -10.624 31.02 31.020 88.32 88.320 -6.428 11.68 11.680 39.92 299 0.875 bicubic
75 gluon_resnext101_32x4d -3 68.96 68.960 -11.374 31.04 31.040 88.34 88.340 -6.586 11.66 11.660 44.18 224 0.875 bicubic
76 tf_efficientnet_b2_ap -2 68.93 68.930 -11.376 31.07 31.070 88.34 88.340 -6.688 11.66 11.660 9.11 260 0.89 0.890 bicubic
77 gluon_resnet152_v1b +18 68.81 68.810 -10.882 31.19 31.190 87.71 87.710 -7.028 12.29 12.290 60.19 224 0.875 bicubic
78 dpn131 +12 68.76 68.760 -11.068 31.24 31.240 87.48 87.480 -7.224 12.52 12.520 79.25 224 0.875 bicubic
79 resnext50d_32x4d +17 68.75 68.750 -10.924 31.25 31.250 88.31 88.310 -6.558 11.69 11.690 25.05 224 0.875 bicubic
80 tf_efficientnet_b2 +2 68.75 68.750 -11.340 31.25 31.250 87.95 87.950 -6.956 12.05 12.050 9.11 260 0.89 0.890 bicubic
81 gluon_resnet101_v1s -6 68.72 68.720 -11.580 31.28 31.280 87.9 87.900 -7.250 12.1 12.100 44.67 224 0.875 bicubic
82 dpn107 -3 68.71 68.710 -11.454 31.29 31.290 88.13 88.130 -6.782 11.87 11.870 86.92 224 0.875 bicubic
83 gluon_seresnext50_32x4d +4 68.67 68.670 -11.242 31.33 31.330 88.32 88.320 -6.498 11.68 11.680 27.56 224 0.875 bicubic
84 hrnet_w64 +17 68.63 68.630 -10.842 31.37 31.370 88.07 88.070 -6.580 11.93 11.930 128.06 224 0.875 bilinear
85 resnext50_32x4d +7 68.61 68.610 -11.152 31.39 31.390 87.57 87.570 -7.030 12.43 12.430 25.03 224 0.875 bicubic
86 dpn98 +11 68.58 68.580 -11.056 31.42 31.420 87.66 87.660 -6.934 12.34 12.340 61.57 224 0.875 bicubic
87 ssl_resnet50 +24 68.42 68.420 -10.808 31.58 31.580 88.58 88.580 -6.252 11.42 11.420 25.56 224 0.875 bilinear
88 ecaresnet50d_pruned +5 68.39 68.390 -11.328 31.61 31.610 88.37 88.370 -6.520 11.63 11.630 19.94 224 0.875 bicubic
89 skresnext50_32x4d -8 68.39 68.390 -11.760 31.61 31.610 87.59 87.590 -7.054 12.41 12.410 27.48 224 0.875 bicubic
90 dla102x2 +12 68.34 68.340 -11.112 31.66 31.660 87.87 87.870 -6.774 12.13 12.130 41.75 224 0.875 bilinear
91 efficientnet_b2_pruned -6 68.3 68.300 -11.618 31.7 31.700 88.1 88.100 -6.748 11.9 11.900 8.31 260 0.89 0.890 bicubic
92 gluon_resnext50_32x4d +11 68.28 68.280 -11.076 31.72 31.720 87.32 87.320 -7.104 12.68 12.680 25.03 224 0.875 bicubic
93 tf_efficientnet_lite3 -2 68.23 68.230 -11.582 31.77 31.770 87.72 87.720 -7.194 12.28 12.280 8.2 8.20 300 0.904 bilinear
94 ese_vovnet39b +10 68.19 68.190 -11.130 31.81 31.810 88.26 88.260 -6.450 11.74 11.740 24.57 224 0.875 bicubic
95 tf_efficientnet_el -27 68.18 68.180 -12.268 31.82 31.820 88.35 88.350 -6.810 11.65 11.650 10.59 300 0.904 bicubic
96 dpn92 -13 68.01 68.010 -12.006 31.99 31.990 87.59 87.590 -7.248 12.41 12.410 37.67 224 0.875 bicubic
97 gluon_resnet50_v1d +20 67.91 67.910 -11.164 32.09 32.090 87.12 87.120 -7.356 12.88 12.880 25.58 224 0.875 bicubic
98 seresnext50_32x4d +18 67.87 67.870 -11.206 32.13 32.130 87.62 87.620 -6.814 12.38 12.380 27.56 224 0.875 bilinear
99 resnext101_32x8d +6 67.85 67.850 -11.462 32.15 32.150 87.48 87.480 -7.046 12.52 12.520 88.79 224 0.875 bilinear
100 hrnet_w44 +23 67.77 67.770 -11.124 32.23 32.230 87.53 87.530 -6.840 12.47 12.470 67.06 224 0.875 bilinear
101 hrnet_w48 +5 67.77 67.770 -11.540 32.23 32.230 87.42 87.420 -7.098 12.58 12.580 77.47 224 0.875 bilinear
102 tf_efficientnet_b0_ns +32 67.72 67.720 -10.932 32.28 32.280 88.08 88.080 -6.288 11.92 11.920 5.29 224 0.875 bicubic
103 xception +16 67.67 67.670 -11.378 32.33 32.330 87.57 87.570 -6.822 12.43 12.430 22.86 299 0.8975 0.897 bicubic
104 dla169 +26 67.61 67.610 -11.100 32.39 32.390 87.56 87.560 -6.778 12.44 12.440 53.99 224 0.875 bilinear
105 gluon_inception_v3 +22 67.59 67.590 -11.214 32.41 32.410 87.46 87.460 -6.920 12.54 12.540 23.83 299 0.875 bicubic
106 hrnet_w40 +16 67.59 67.590 -11.344 32.41 32.410 87.13 87.130 -7.336 12.87 12.870 57.56 224 0.875 bilinear
107 gluon_resnet101_v1c -7 67.56 67.560 -11.984 32.44 32.440 87.16 87.160 -7.426 12.84 12.840 44.57 224 0.875 bicubic
108 seresnet152 +25 67.55 67.550 -11.108 32.45 32.450 87.39 87.390 -6.984 12.61 12.610 66.82 224 0.875 bilinear
109 res2net50_26w_8s +4 67.53 67.530 -11.680 32.47 32.470 87.27 87.270 -7.092 12.73 12.730 48.4 48.40 224 0.875 bilinear
110 tf_efficientnet_b1_ap = 67.52 67.520 -11.758 32.48 32.480 87.77 87.770 -6.538 12.23 12.230 7.79 240 0.882 bicubic
111 tf_efficientnet_cc_b1_8e -3 67.48 67.480 -11.818 32.52 32.520 87.31 87.310 -7.054 12.69 12.690 39.72 240 0.882 bicubic
112 gluon_resnet101_v1b -5 67.45 67.450 -11.854 32.55 32.550 87.23 87.230 -7.294 12.77 12.770 44.55 224 0.875 bicubic
113 res2net101_26w_4s +2 67.45 67.450 -11.746 32.55 32.550 87.01 87.010 -7.430 12.99 12.990 45.21 224 0.875 bilinear
114 resnet50 +6 67.44 67.440 -11.592 32.56 32.560 87.42 87.420 -6.964 12.58 12.580 25.56 224 0.875 bicubic
115 resnetblur50 -6 67.44 67.440 -11.850 32.56 32.560 87.43 87.430 -7.202 12.57 12.570 25.56 224 0.875 bicubic
116 resnest26d +22 67.21 67.210 -11.272 32.79 32.790 87.18 87.180 -7.110 12.82 12.820 17.07 224 0.875 bilinear
117 efficientnet_b1 +14 67.16 67.160 -11.538 32.84 32.840 87.15 87.150 -7.002 12.85 12.850 7.79 240 0.875 bicubic
118 seresnet101 +26 67.15 67.150 -11.246 32.85 32.850 87.05 87.050 -7.208 12.95 12.950 49.33 224 0.875 bilinear
119 gluon_resnet50_v1s +10 67.1 67.100 -11.612 32.9 32.900 86.86 86.860 -7.382 13.14 13.140 25.68 224 0.875 bicubic
120 dla60x +26 67.08 67.080 -11.162 32.92 32.920 87.17 87.170 -6.852 12.83 12.830 17.65 224 0.875 bilinear
121 dla60_res2net +18 67.03 67.030 -11.442 32.97 32.970 87.14 87.140 -7.064 12.86 12.860 21.15 224 0.875 bilinear
122 resnet152 +23 67.02 67.020 -11.292 32.98 32.980 87.57 87.570 -6.476 12.43 12.430 60.19 224 0.875 bilinear
123 dla102x +13 67.0 67.000 -11.508 33.0 33.000 86.77 86.770 -7.464 13.23 13.230 26.77 224 0.875 bilinear
124 mixnet_l -3 66.97 66.970 -12.006 33.03 33.030 86.94 86.940 -7.244 13.06 13.060 7.33 224 0.875 bicubic
125 res2net50_26w_6s +10 66.91 66.910 -11.664 33.09 33.090 86.9 86.900 -7.226 13.1 13.100 37.05 224 0.875 bilinear
126 efficientnet_es +26 66.89 66.890 -11.164 33.11 33.110 86.73 86.730 -7.200 13.27 13.270 5.44 224 0.875 bicubic
127 tf_efficientnet_b1 -1 66.89 66.890 -11.942 33.11 33.110 87.04 87.040 -7.156 12.96 12.960 7.79 240 0.882 bicubic
128 tf_efficientnet_em +4 66.87 66.870 -11.828 33.13 33.130 86.98 86.980 -7.340 13.02 13.020 6.9 6.90 240 0.882 bicubic
129 hrnet_w32 +13 66.79 66.790 -11.658 33.21 33.210 87.29 87.290 -6.898 12.71 12.710 41.23 224 0.875 bilinear
130 tf_mixnet_l -2 66.78 66.780 -11.990 33.22 33.220 86.46 86.460 -7.544 13.54 13.540 7.33 224 0.875 bicubic
131 hrnet_w30 +18 66.76 66.760 -11.436 33.24 33.240 86.79 86.790 -7.430 13.21 13.210 37.71 224 0.875 bilinear
132 selecsls60b +11 66.72 66.720 -11.698 33.28 33.280 86.54 86.540 -7.626 13.46 13.460 32.77 224 0.875 bicubic
133 wide_resnet101_2 -8 66.68 66.680 -12.166 33.32 33.320 87.04 87.040 -7.244 12.96 12.960 126.89 224 0.875 bilinear
134 wide_resnet50_2 +6 66.65 66.650 -11.818 33.35 33.350 86.81 86.810 -7.276 13.19 13.190 68.88 224 0.875 bilinear
135 dla60_res2next +6 66.64 66.640 -11.808 33.36 33.360 87.02 87.020 -7.124 12.98 12.980 17.33 224 0.875 bilinear
136 adv_inception_v3 +30 66.6 66.600 -10.980 33.4 33.400 86.56 86.560 -7.164 13.44 13.440 23.83 299 0.875 bicubic
137 dla102 +16 66.55 66.550 -11.476 33.45 33.450 86.91 86.910 -7.040 13.09 13.090 33.73 224 0.875 bilinear
138 gluon_resnet50_v1c +16 66.54 66.540 -11.470 33.46 33.460 86.16 86.160 -7.828 13.84 13.840 25.58 224 0.875 bicubic
139 tf_inception_v3 +21 66.42 66.420 -11.436 33.58 33.580 86.68 86.680 -6.964 13.32 13.320 23.83 299 0.875 bicubic
140 efficientnet_b0 +22 66.25 66.250 -11.442 33.75 33.750 85.95 85.950 -7.582 14.05 14.050 5.29 224 0.875 bicubic
141 seresnet50 +22 66.24 66.240 -11.396 33.76 33.760 86.33 86.330 -7.422 13.67 13.670 28.09 224 0.875 bilinear
142 selecsls60 +15 66.22 66.220 -11.762 33.78 33.780 86.33 86.330 -7.502 13.67 13.670 30.67 224 0.875 bicubic
143 tf_efficientnet_cc_b0_8e +16 66.21 66.210 -11.698 33.79 33.790 86.22 86.220 -7.436 13.78 13.780 24.01 224 0.875 bicubic
144 tv_resnext50_32x4d +20 66.18 66.180 -11.438 33.82 33.820 86.04 86.040 -7.658 13.96 13.960 25.03 224 0.875 bilinear
145 res2net50_26w_4s +13 66.17 66.170 -11.776 33.83 33.830 86.6 86.600 -7.252 13.4 13.400 25.7 25.70 224 0.875 bilinear
146 inception_v3 +25 66.12 66.120 -11.316 33.88 33.880 86.34 86.340 -7.136 13.66 13.660 23.83 299 0.875 bicubic
147 efficientnet_b1_pruned = 66.08 66.080 -12.162 33.92 33.920 86.58 86.580 -7.252 13.42 13.420 6.33 240 0.882 bicubic
148 gluon_resnet50_v1b +19 66.04 66.040 -11.538 33.96 33.960 86.27 86.270 -7.448 13.73 13.730 25.56 224 0.875 bicubic
149 res2net50_14w_8s +2 66.02 66.020 -12.132 33.98 33.980 86.24 86.240 -7.602 13.76 13.760 25.06 224 0.875 bilinear
150 densenet161 +23 65.85 65.850 -11.498 34.15 34.150 86.46 86.460 -7.188 13.54 13.540 28.68 224 0.875 bicubic
151 res2next50 -3 65.85 65.850 -12.392 34.15 34.150 85.83 85.830 -8.062 14.17 14.170 24.67 224 0.875 bilinear
152 seresnext26tn_32x4d +3 65.85 65.850 -12.140 34.15 34.150 85.68 85.680 -8.068 14.32 14.320 16.81 224 0.875 bicubic
153 skresnet34 +32 65.77 65.770 -11.140 34.23 34.230 85.96 85.960 -7.356 14.04 14.040 22.28 224 0.875 bicubic
154 resnet101 +18 65.68 65.680 -11.694 34.32 34.320 85.98 85.980 -7.566 14.02 14.020 44.55 224 0.875 bilinear
155 dpn68b +13 65.6 65.600 -11.914 34.4 34.400 85.94 85.940 -7.882 14.06 14.060 12.61 224 0.875 bicubic
156 seresnext26t_32x4d = 65.6 65.600 -12.388 34.4 34.400 86.09 86.090 -7.616 13.91 13.910 16.82 224 0.875 bicubic
157 selecsls42b +22 65.59 65.590 -11.586 34.41 34.410 85.83 85.830 -7.562 14.17 14.170 32.46 224 0.875 bicubic
158 tf_efficientnet_b0_ap +23 65.49 65.490 -11.594 34.51 34.510 85.55 85.550 -7.704 14.45 14.450 5.29 224 0.875 bicubic
159 seresnext26d_32x4d +6 65.42 65.420 -12.184 34.58 34.580 85.97 85.970 -7.642 14.03 14.030 16.81 224 0.875 bicubic
160 tf_efficientnet_lite2 +10 65.39 65.390 -12.070 34.61 34.610 86.03 86.030 -7.716 13.97 13.970 6.09 260 0.89 0.890 bicubic
161 res2net50_48w_2s +8 65.32 65.320 -12.194 34.68 34.680 85.96 85.960 -7.588 14.04 14.040 25.29 224 0.875 bilinear
162 densenetblur121d +28 65.3 65.300 -11.276 34.7 34.700 85.71 85.710 -7.480 14.29 14.290 8.0 8.00 224 0.875 bicubic
163 densenet201 +13 65.28 65.280 -12.010 34.72 34.720 85.67 85.670 -7.808 14.33 14.330 20.01 224 0.875 bicubic
164 tf_efficientnet_es +13 65.24 65.240 -12.024 34.76 34.760 85.54 85.540 -8.060 14.46 14.460 5.44 224 0.875 bicubic
165 dla60 +17 65.22 65.220 -11.804 34.78 34.780 85.75 85.750 -7.558 14.25 14.250 22.33 224 0.875 bilinear
166 tf_efficientnet_cc_b0_4e +8 65.13 65.130 -12.174 34.87 34.870 85.13 85.130 -8.202 14.87 14.870 13.31 224 0.875 bicubic
167 mobilenetv2_120d +8 65.04 65.040 -12.254 34.96 34.960 85.99 85.990 -7.512 14.01 14.010 5.83 224 0.875 bicubic
168 seresnext26_32x4d +12 65.04 65.040 -12.060 34.96 34.960 85.65 85.650 -7.660 14.35 14.350 16.79 224 0.875 bicubic
169 hrnet_w18 +18 64.91 64.910 -11.846 35.09 35.090 85.75 85.750 -7.692 14.25 14.250 21.3 21.30 224 0.875 bilinear
170 densenet169 +26 64.78 64.780 -11.132 35.22 35.220 85.25 85.250 -7.774 14.75 14.750 14.15 224 0.875 bicubic
171 mixnet_m +7 64.69 64.690 -12.566 35.31 35.310 85.47 85.470 -7.948 14.53 14.530 5.01 224 0.875 bicubic
172 resnet26d +16 64.63 64.630 -12.050 35.37 35.370 85.12 85.120 -8.046 14.88 14.880 16.01 224 0.875 bicubic
173 tf_efficientnet_lite1 +16 64.37 64.370 -12.268 35.63 35.630 85.49 85.490 -7.742 14.51 14.510 5.42 240 0.882 bicubic
174 tf_efficientnet_b0 +12 64.29 64.290 -12.550 35.71 35.710 85.25 85.250 -7.976 14.75 14.750 5.29 224 0.875 bicubic
175 tf_mixnet_m +8 64.27 64.270 -12.680 35.73 35.730 85.09 85.090 -8.066 14.91 14.910 5.01 224 0.875 bicubic
176 dpn68 +17 64.22 64.220 -12.086 35.78 35.780 85.18 85.180 -7.790 14.82 14.820 12.61 224 0.875 bicubic
177 mobilenetv2_140 +14 64.05 64.050 -12.474 35.95 35.950 85.02 85.020 -7.970 14.98 14.980 6.11 224 0.875 bicubic
178 densenet121 +22 63.74 63.740 -11.834 36.26 36.260 84.63 84.630 -8.026 15.37 15.370 7.98 224 0.875 bicubic
179 resnest14d +23 63.6 63.600 -11.904 36.4 36.400 84.22 84.220 -8.294 15.78 15.780 10.61 224 0.875 bilinear
180 tf_mixnet_s +18 63.59 63.590 -12.058 36.41 36.410 84.27 84.270 -8.366 15.73 15.730 4.13 224 0.875 bicubic
181 resnet26 +23 63.45 63.450 -11.842 36.55 36.550 84.27 84.270 -8.300 15.73 15.730 16.0 16.00 224 0.875 bicubic
182 mixnet_s +13 63.38 63.380 -12.608 36.62 36.620 84.71 84.710 -8.084 15.29 15.290 4.13 224 0.875 bicubic
183 mobilenetv3_large_100 +14 63.36 63.360 -12.408 36.64 36.640 84.08 84.080 -8.460 15.92 15.920 5.48 224 0.875 bicubic
184 tv_resnet50 +10 63.33 63.330 -12.800 36.67 36.670 84.65 84.650 -8.212 15.35 15.350 25.56 224 0.875 bilinear
185 mobilenetv3_rw +14 63.23 63.230 -12.398 36.77 36.770 84.52 84.520 -8.190 15.48 15.480 5.48 224 0.875 bicubic
186 semnasnet_100 +17 63.12 63.120 -12.336 36.88 36.880 84.53 84.530 -8.062 15.47 15.470 3.89 224 0.875 bicubic
187 tv_densenet121 +26 62.94 62.940 -11.812 37.06 37.060 84.26 84.260 -7.892 15.74 15.740 7.98 224 0.875 bicubic
188 seresnet34 +24 62.89 62.890 -11.918 37.11 37.110 84.22 84.220 -7.906 15.78 15.780 21.96 224 0.875 bilinear
189 hrnet_w18_small_v2 +17 62.83 62.830 -12.296 37.17 37.170 83.97 83.970 -8.446 16.03 16.030 15.6 15.60 224 0.875 bilinear
190 mobilenetv2_110d +19 62.82 62.820 -12.232 37.18 37.180 84.48 84.480 -7.700 15.52 15.520 4.52 224 0.875 bicubic
191 resnet34 +17 62.82 62.820 -12.292 37.18 37.180 84.12 84.120 -8.168 15.88 15.880 21.8 21.80 224 0.875 bilinear
192 swsl_resnet18 +30 62.73 62.730 -10.556 37.27 37.270 84.3 84.300 -7.432 15.7 15.700 11.69 224 0.875 bilinear
193 tf_efficientnet_lite0 +18 62.58 62.580 -12.262 37.42 37.420 84.25 84.250 -7.920 15.75 15.750 4.65 224 0.875 bicubic
194 gluon_resnet34_v1b +22 62.56 62.560 -12.020 37.44 37.440 84.0 84.000 -7.988 16.0 16.000 21.8 21.80 224 0.875 bicubic
195 dla34 +20 62.51 62.510 -12.126 37.49 37.490 83.92 83.920 -8.144 16.08 16.080 15.78 224 0.875 bilinear
196 tf_mobilenetv3_large_100 +5 62.47 62.470 -13.046 37.53 37.530 83.96 83.960 -8.640 16.04 16.040 5.48 224 0.875 bilinear
197 fbnetc_100 +10 62.43 62.430 -12.690 37.57 37.570 83.39 83.390 -8.996 16.61 16.610 5.57 224 0.875 bilinear
198 mnasnet_100 +16 61.91 61.910 -12.746 38.09 38.090 83.71 83.710 -8.416 16.29 16.290 4.38 224 0.875 bicubic
199 ssl_resnet18 +26 61.49 61.490 -11.110 38.51 38.510 83.33 83.330 -8.086 16.67 16.670 11.69 224 0.875 bilinear
200 spnasnet_100 +17 61.21 61.210 -12.870 38.79 38.790 82.77 82.770 -9.062 17.23 17.230 4.42 224 0.875 bilinear
201 tv_resnet34 +20 61.2 61.200 -12.114 38.8 38.800 82.72 82.720 -8.700 17.28 17.280 21.8 21.80 224 0.875 bilinear
202 skresnet18 +21 60.85 60.850 -12.194 39.15 39.150 82.88 82.880 -8.298 17.12 17.120 11.96 224 0.875 bicubic
203 tf_mobilenetv3_large_075 +17 60.38 60.380 -13.062 39.62 39.620 81.96 81.960 -9.392 18.04 18.040 3.99 224 0.875 bilinear
204 mobilenetv2_100 +20 60.16 60.160 -12.818 39.84 39.840 82.24 82.240 -8.776 17.76 17.760 3.5 3.50 224 0.875 bicubic
205 seresnet18 +24 59.81 59.810 -11.948 40.19 40.190 81.68 81.680 -8.654 18.32 18.320 11.78 224 0.875 bicubic
206 tf_mobilenetv3_large_minimal_100 +22 59.07 59.070 -13.174 40.93 40.930 81.14 81.140 -9.496 18.86 18.860 3.92 224 0.875 bilinear
207 hrnet_w18_small +20 58.97 58.970 -13.372 41.03 41.030 81.34 81.340 -9.332 18.66 18.660 13.19 224 0.875 bilinear
208 gluon_resnet18_v1b +22 58.32 58.320 -12.510 41.68 41.680 80.96 80.960 -8.796 19.04 19.040 11.69 224 0.875 bicubic
209 resnet18 +23 57.18 57.180 -12.578 42.82 42.820 80.19 80.190 -8.888 19.81 19.810 11.69 224 0.875 bilinear
210 dla60x_c +25 56.02 56.020 -11.888 43.98 43.980 78.96 78.960 -9.474 21.04 21.040 1.34 224 0.875 bilinear
211 tf_mobilenetv3_small_100 +23 54.51 54.510 -13.408 45.49 45.490 77.08 77.080 -10.582 22.92 22.920 2.54 224 0.875 bilinear
212 dla46x_c +24 53.08 53.080 -12.900 46.92 46.920 76.84 76.840 -10.140 23.16 23.160 1.08 224 0.875 bilinear
213 dla46_c +25 52.2 52.200 -12.678 47.8 47.800 75.68 75.680 -10.606 24.32 24.320 1.31 224 0.875 bilinear
214 tf_mobilenetv3_small_075 +23 52.15 52.150 -13.568 47.85 47.850 75.46 75.460 -10.676 24.54 24.540 2.04 224 0.875 bilinear
215 tf_mobilenetv3_small_minimal_100 +24 49.53 49.530 -13.368 50.47 50.470 73.05 73.050 -11.180 26.95 26.950 2.04 224 0.875 bilinear

@ -1,239 +1,239 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,58.8143,41.1857,81.0863,18.9137,828.41,224,0.875,bilinear
ig_resnext101_32x32d,58.38,41.62,80.3789,19.6211,468.53,224,0.875,bilinear
ig_resnext101_32x16d,57.7001,42.2999,79.9131,20.0869,194.03,224,0.875,bilinear
swsl_resnext101_32x16d,57.4663,42.5337,80.3808,19.6192,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,56.4346,43.5654,78.9345,21.0655,88.79,224,0.875,bilinear
ig_resnext101_32x8d,54.9176,45.0824,77.5452,22.4548,88.79,224,0.875,bilinear
swsl_resnext101_32x4d,53.5911,46.4089,76.3387,23.6613,44.18,224,0.875,bilinear
tf_efficientnet_l2_ns_475,51.4866,48.5134,73.9295,26.0705,480.31,475,0.936,bicubic
swsl_resnext50_32x4d,50.449,49.551,73.3577,26.6423,25.03,224,0.875,bilinear
swsl_resnet50,49.551,50.449,72.3319,27.6681,25.56,224,0.875,bilinear
tf_efficientnet_b7_ns,47.8001,52.1999,69.6378,30.3622,66.35,600,0.949,bicubic
tf_efficientnet_b6_ns,47.751,52.249,69.9621,30.0379,43.04,528,0.942,bicubic
tf_efficientnet_l2_ns,47.5702,52.4298,70.0171,29.9829,480.31,800,0.96,bicubic
tf_efficientnet_b8_ap,45.7781,54.2219,67.9047,32.0953,87.41,672,0.954,bicubic
tf_efficientnet_b5_ns,45.6071,54.3929,67.8516,32.1484,30.39,456,0.934,bicubic
tf_efficientnet_b4_ns,43.4554,56.5446,65.5132,34.4868,19.34,380,0.922,bicubic
tf_efficientnet_b8,42.5023,57.4977,64.8745,35.1255,87.41,672,0.954,bicubic
tf_efficientnet_b7,41.4372,58.5628,63.0274,36.9726,66.35,600,0.949,bicubic
tf_efficientnet_b7_ap,41.4333,58.5667,62.8761,37.1239,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,41.4196,58.5804,62.0822,37.9178,30.39,456,0.934,bicubic
tf_efficientnet_b6_ap,41.0914,58.9086,62.3593,37.6407,43.04,528,0.942,bicubic
tf_efficientnet_b4_ap,40.4763,59.5237,61.7127,38.2873,19.34,380,0.922,bicubic
tf_efficientnet_b3_ns,39.5822,60.4178,61.4632,38.5368,12.23,300,0.904,bicubic
tf_efficientnet_b5,38.3285,61.6715,59.9285,40.0715,30.39,456,0.934,bicubic
tf_efficientnet_b3_ap,37.0611,62.9389,57.2363,42.7637,12.23,300,0.904,bicubic
resnest269e,36.67,63.33,56.8099,43.1901,110.93,416,0.875,bilinear
tf_efficientnet_b2_ns,36.1768,63.8232,57.5547,42.4453,9.11,260,0.89,bicubic
ecaresnet101d,36.0058,63.9942,56.1536,43.8464,44.57,224,0.875,bicubic
swsl_resnet18,35.8604,64.1396,58.437,41.563,11.69,224,0.875,bilinear
resnest200e,35.8466,64.1534,55.8903,44.1097,70.2,320,0.875,bilinear
resnest101e,35.3652,64.6348,55.7861,44.2139,48.28,256,0.875,bilinear
ssl_resnext101_32x16d,34.6087,65.3913,55.9139,44.0861,194.03,224,0.875,bilinear
resnest50d_4s2x40d,34.3611,65.6389,54.7112,45.2888,30.42,224,0.875,bicubic
tf_efficientnet_b1_ns,34.1528,65.8472,55.4894,44.5106,7.79,240,0.882,bicubic
tf_efficientnet_b4,34.0624,65.9376,54.216,45.784,19.34,380,0.922,bicubic
ssl_resnext101_32x8d,34.0211,65.9789,55.5935,44.4065,88.79,224,0.875,bilinear
tf_efficientnet_b6,34.0054,65.9946,54.5403,45.4597,43.04,528,0.942,bicubic
efficientnet_b3_pruned,33.9956,66.0044,54.1099,45.8901,9.86,300,0.904,bicubic
tresnet_xl,33.2587,66.7413,52.2962,47.7038,78.44,224,0.875,bilinear
resnest50d_1s4x24d,33.1388,66.8612,52.8307,47.1693,25.68,224,0.875,bicubic
resnest50d,32.9678,67.0322,52.701,47.299,27.48,224,0.875,bilinear
tf_efficientnet_b3,32.8637,67.1363,52.9623,47.0377,12.23,300,0.904,bicubic
inception_resnet_v2,32.736,67.264,50.6396,49.3604,55.84,299,0.8975,bicubic
gluon_resnet152_v1d,32.7301,67.2699,51.0837,48.9163,60.21,224,0.875,bicubic
tf_efficientnet_b2_ap,32.679,67.321,52.2333,47.7667,9.11,260,0.89,bicubic
nasnetalarge,32.5827,67.4173,49.7868,50.2132,88.75,331,0.875,bicubic
tresnet_l,32.567,67.433,51.1407,48.8593,55.99,224,0.875,bilinear
pnasnet5large,32.5316,67.4684,50.1877,49.8123,86.06,331,0.875,bicubic
ens_adv_inception_resnet_v2,32.3705,67.6295,50.4274,49.5726,55.84,299,0.8975,bicubic
gluon_resnet152_v1s,32.3312,67.6688,50.5394,49.4606,60.32,224,0.875,bicubic
gluon_seresnext101_64x4d,32.1936,67.8064,50.3272,49.6728,88.23,224,0.875,bicubic
gluon_seresnext101_32x4d,32.115,67.885,51.2409,48.7591,48.96,224,0.875,bicubic
efficientnet_b3a,31.7279,68.2721,51.3215,48.6785,12.23,320,1.0,bicubic
efficientnet_b3,31.5648,68.4352,51.2724,48.7276,12.23,300,0.904,bicubic
resnet50,31.5451,68.4549,50.1719,49.8281,25.56,224,0.875,bicubic
ssl_resnext101_32x4d,31.4331,68.5669,52.1154,47.8846,44.18,224,0.875,bilinear
inception_v4,31.382,68.618,49.2366,50.7634,42.68,299,0.875,bicubic
ecaresnetlight,31.1325,68.8675,50.2525,49.7475,30.16,224,0.875,bicubic
gluon_resnet101_v1s,31.1128,68.8872,49.7907,50.2093,44.67,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,31.0814,68.9186,50.7733,49.2267,24.01,224,0.875,bicubic
ecaresnet50d,31.0637,68.9363,50.846,49.154,25.58,224,0.875,bicubic
gluon_resnet152_v1c,31.0067,68.9933,48.9359,51.0641,60.21,224,0.875,bicubic
tresnet_m,30.9929,69.0071,48.6903,51.3097,31.39,224,0.875,bilinear
gluon_resnext101_64x4d,30.9812,69.0188,48.5527,51.4473,83.46,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,30.9006,69.0994,50.0737,49.9263,39.72,240,0.882,bicubic
ecaresnet101d_pruned,30.8947,69.1053,50.001,49.999,24.88,224,0.875,bicubic
gluon_resnext101_32x4d,30.8809,69.1191,48.537,51.463,44.18,224,0.875,bicubic
tf_efficientnet_lite4,30.8397,69.1603,50.3979,49.6021,13.01,380,0.92,bilinear
dpn107,30.6805,69.3195,48.8062,51.1938,86.92,224,0.875,bicubic
ese_vovnet39b,30.6766,69.3234,49.8929,50.1071,24.57,224,0.875,bicubic
tresnet_xl_448,30.6196,69.3804,49.0715,50.9285,78.44,448,0.875,bilinear
gluon_resnet152_v1b,30.6176,69.3824,48.5292,51.4708,60.19,224,0.875,bicubic
ssl_resnext50_32x4d,30.594,69.406,50.6534,49.3466,25.03,224,0.875,bilinear
gluon_resnet101_v1d,30.5095,69.4905,47.975,52.025,44.57,224,0.875,bicubic
resnest26d,30.4997,69.5003,50.677,49.323,17.07,224,0.875,bilinear
efficientnet_b2a,30.4231,69.5769,49.6748,50.3252,9.11,288,1.0,bicubic
tf_efficientnet_b1_ap,30.4191,69.5809,49.5529,50.4471,7.79,240,0.882,bicubic
dpn98,30.0576,69.9424,48.2403,51.7597,61.57,224,0.875,bicubic
tf_efficientnet_b2,30.0202,69.9798,49.5903,50.4097,9.11,260,0.89,bicubic
dpn131,30.0143,69.9857,48.144,51.856,79.25,224,0.875,bicubic
senet154,30.0006,69.9994,48.032,51.968,115.09,224,0.875,bilinear
dpn92,29.9691,70.0309,49.1599,50.8401,37.67,224,0.875,bicubic
gluon_senet154,29.8866,70.1134,47.8728,52.1272,115.09,224,0.875,bicubic
xception,29.8493,70.1507,48.6903,51.3097,22.86,299,0.8975,bicubic
adv_inception_v3,29.8237,70.1763,47.8669,52.1331,23.83,299,0.875,bicubic
resnetblur50,29.6233,70.3767,48.2501,51.7499,25.56,224,0.875,bicubic
efficientnet_b2,29.6174,70.3826,48.7728,51.2272,9.11,260,0.875,bicubic
gluon_xception65,29.5545,70.4455,47.523,52.477,39.92,299,0.875,bicubic
resnext101_32x8d,29.4347,70.5653,48.482,51.518,88.79,224,0.875,bilinear
ssl_resnet50,29.4229,70.5771,49.773,50.227,25.56,224,0.875,bilinear
resnext50_32x4d,29.3285,70.6715,47.3953,52.6047,25.03,224,0.875,bicubic
ecaresnet50d_pruned,29.2165,70.7835,48.4584,51.5416,19.94,224,0.875,bicubic
tresnet_l_448,29.1674,70.8326,47.2342,52.7658,55.99,448,0.875,bilinear
gluon_inception_v3,29.1143,70.8857,46.9433,53.0567,23.83,299,0.875,bicubic
hrnet_w64,28.9866,71.0134,47.1399,52.8601,128.06,224,0.875,bilinear
tf_efficientnet_b0_ns,28.9139,71.0861,49.0106,50.9894,5.29,224,0.875,bicubic
tf_efficientnet_b1,28.8923,71.1077,47.5112,52.4888,7.79,240,0.882,bicubic
gluon_resnet101_v1b,28.8569,71.1431,46.3715,53.6285,44.55,224,0.875,bicubic
skresnext50_32x4d,28.8176,71.1824,46.5032,53.4968,27.48,224,0.875,bicubic
tf_efficientnet_lite3,28.6545,71.3455,47.358,52.642,8.2,300,0.904,bilinear
hrnet_w40,28.6447,71.3553,47.4425,52.5575,57.56,224,0.875,bilinear
gluon_seresnext50_32x4d,28.6408,71.3592,46.4501,53.5499,27.56,224,0.875,bicubic
skresnet34,28.629,71.371,47.9573,52.0427,22.28,224,0.875,bicubic
resnet152,28.5347,71.4653,47.1143,52.8857,60.19,224,0.875,bilinear
hrnet_w48,28.4069,71.5931,47.5741,52.4259,77.47,224,0.875,bilinear
gluon_resnext50_32x4d,28.3833,71.6167,45.3261,54.6739,25.03,224,0.875,bicubic
efficientnet_b2_pruned,28.3657,71.6343,47.0593,52.9407,8.31,260,0.89,bicubic
tf_efficientnet_b0_ap,28.3499,71.6501,47.5309,52.4691,5.29,224,0.875,bicubic
dla102x2,28.3185,71.6815,46.7567,53.2433,41.75,224,0.875,bilinear
dla169,28.3106,71.6894,47.3992,52.6008,53.99,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,28.3106,71.6894,47.3639,52.6361,13.31,224,0.875,bicubic
mixnet_xl,28.293,71.707,46.7174,53.2826,11.9,224,0.875,bicubic
gluon_resnet50_v1d,28.236,71.764,45.8763,54.1237,25.58,224,0.875,bicubic
wide_resnet101_2,28.1063,71.8937,46.4246,53.5754,126.89,224,0.875,bilinear
gluon_resnet101_v1c,28.1023,71.8977,45.953,54.047,44.57,224,0.875,bicubic
densenet161,28.1004,71.8996,46.6506,53.3494,28.68,224,0.875,bicubic
regnetx_320,28.0788,71.9212,45.1198,54.8802,107.81,224,0.875,bicubic
regnety_320,28.0709,71.9291,45.4597,54.5403,145.05,224,0.875,bicubic
dpn68b,27.8842,72.1158,47.4602,52.5398,12.61,224,0.875,bicubic
regnetx_160,27.8253,72.1747,45.6307,54.3693,54.28,224,0.875,bicubic
tf_inception_v3,27.786,72.214,45.7113,54.2887,23.83,299,0.875,bicubic
res2net101_26w_4s,27.7742,72.2258,45.1709,54.8291,45.21,224,0.875,bilinear
regnety_160,27.6386,72.3614,45.5344,54.4656,83.59,224,0.875,bicubic
hrnet_w44,27.6248,72.3752,45.8311,54.1689,67.06,224,0.875,bilinear
inception_v3,27.5698,72.4302,45.2613,54.7387,23.83,299,0.875,bicubic
regnetx_080,27.4106,72.5894,45.0215,54.9785,39.57,224,0.875,bicubic
hrnet_w30,27.3851,72.6149,46.5425,53.4575,37.71,224,0.875,bilinear
hrnet_w32,27.3772,72.6228,45.9903,54.0097,41.23,224,0.875,bilinear
gluon_resnet50_v1s,27.3261,72.6739,45.2141,54.7859,25.68,224,0.875,bicubic
densenet201,27.2613,72.7387,46.2241,53.7759,20.01,224,0.875,bicubic
regnety_064,27.2279,72.7721,44.8506,55.1494,30.58,224,0.875,bicubic
densenetblur121d,27.224,72.776,46.3067,53.6933,8.0,224,0.875,bicubic
efficientnet_b1_pruned,27.1945,72.8055,45.8724,54.1276,6.33,240,0.882,bicubic
res2net50_26w_8s,27.0726,72.9274,44.432,55.568,48.4,224,0.875,bilinear
dla102x,27.0235,72.9765,45.4951,54.5049,26.77,224,0.875,bilinear
resnet101,26.9685,73.0315,45.2357,54.7643,44.55,224,0.875,bilinear
resnext50d_32x4d,26.8742,73.1258,44.43,55.57,25.05,224,0.875,bicubic
regnetx_120,26.8644,73.1356,44.6816,55.3184,46.11,224,0.875,bicubic
seresnext101_32x4d,26.8192,73.1808,43.5084,56.4916,48.96,224,0.875,bilinear
densenet169,26.8113,73.1887,45.3752,54.6248,14.15,224,0.875,bicubic
regnetx_064,26.8015,73.1985,44.9036,55.0964,26.21,224,0.875,bicubic
regnety_120,26.7818,73.2182,44.4399,55.5601,51.82,224,0.875,bicubic
regnetx_032,26.7071,73.2929,45.2259,54.7741,15.3,224,0.875,bicubic
densenet121,26.6757,73.3243,45.8999,54.1001,7.98,224,0.875,bicubic
seresnet152,26.6718,73.3282,43.9447,56.0553,66.82,224,0.875,bilinear
tf_efficientnet_el,26.6226,73.3774,44.6364,55.3636,10.59,300,0.904,bicubic
efficientnet_es,26.6168,73.3832,45.106,54.894,5.44,224,0.875,bicubic
res2net50_26w_6s,26.5873,73.4127,43.9781,56.0219,37.05,224,0.875,bilinear
dla60x,26.5637,73.4363,45.0392,54.9608,17.65,224,0.875,bilinear
regnety_080,26.5146,73.4854,44.3554,55.6446,39.18,224,0.875,bicubic
tf_efficientnet_b0,26.491,73.509,45.6562,54.3438,5.29,224,0.875,bicubic
res2net50_14w_8s,26.4713,73.5287,44.3691,55.6309,25.06,224,0.875,bilinear
gluon_resnet50_v1b,26.432,73.568,44.0331,55.9669,25.56,224,0.875,bicubic
regnetx_040,26.2395,73.7605,44.4241,55.5759,22.12,224,0.875,bicubic
dpn68,26.1216,73.8784,44.2335,55.7665,12.61,224,0.875,bicubic
hrnet_w18,25.9761,74.0239,44.8093,55.1907,21.3,224,0.875,bilinear
regnety_040,25.9133,74.0867,43.8543,56.1457,20.65,224,0.875,bicubic
resnet34,25.8838,74.1162,43.9899,56.0101,21.8,224,0.875,bilinear
res2net50_26w_4s,25.87,74.13,43.1606,56.8394,25.7,224,0.875,bilinear
tresnet_m_448,25.8504,74.1496,42.8678,57.1322,31.39,448,0.875,bilinear
gluon_resnet50_v1c,25.7954,74.2046,43.0172,56.9828,25.58,224,0.875,bicubic
selecsls60,25.7285,74.2715,44.0685,55.9315,30.67,224,0.875,bicubic
dla60_res2net,25.6421,74.3579,43.589,56.411,21.15,224,0.875,bilinear
dla60_res2next,25.6382,74.3618,43.6696,56.3304,17.33,224,0.875,bilinear
tf_efficientnet_lite1,25.5065,74.4935,43.5831,56.4169,5.42,240,0.882,bicubic
mixnet_l,25.4986,74.5014,43.4632,56.5368,7.33,224,0.875,bicubic
efficientnet_b1,25.4829,74.5171,43.2864,56.7136,7.79,240,0.875,bicubic
tv_resnext50_32x4d,25.4692,74.5308,42.7912,57.2088,25.03,224,0.875,bilinear
tf_mixnet_l,25.42,74.58,42.5436,57.4564,7.33,224,0.875,bicubic
res2next50,25.3945,74.6055,42.4925,57.5075,24.67,224,0.875,bilinear
selecsls60b,25.3277,74.6723,43.5536,56.4464,32.77,224,0.875,bicubic
seresnet101,25.3277,74.6723,42.8285,57.1715,49.33,224,0.875,bilinear
regnety_032,25.3237,74.6763,42.9071,57.0929,19.44,224,0.875,bicubic
dla102,25.3139,74.6861,43.8366,56.1634,33.73,224,0.875,bilinear
wide_resnet50_2,25.31,74.69,42.1781,57.8219,68.88,224,0.875,bilinear
resnest14d,25.2825,74.7175,44.1215,55.8785,10.61,224,0.875,bilinear
seresnext50_32x4d,25.2176,74.7824,41.9383,58.0617,27.56,224,0.875,bilinear
res2net50_48w_2s,25.0231,74.9769,42.2017,57.7983,25.29,224,0.875,bilinear
efficientnet_b0,25.0152,74.9848,42.7853,57.2147,5.29,224,0.875,bicubic
gluon_resnet34_v1b,24.9484,75.0516,42.237,57.763,21.8,224,0.875,bicubic
mobilenetv2_120d,24.9327,75.0673,43.0643,56.9357,5.83,224,0.875,bicubic
dla60,24.9268,75.0732,43.3021,56.6979,22.33,224,0.875,bilinear
regnety_016,24.8187,75.1813,42.6261,57.3739,11.2,224,0.875,bicubic
tf_efficientnet_em,24.5338,75.4662,42.41,57.59,6.9,240,0.882,bicubic
tf_efficientnet_lite2,24.5299,75.4701,42.292,57.708,6.09,260,0.89,bicubic
skresnet18,24.4945,75.5055,42.5377,57.4623,11.96,224,0.875,bicubic
regnetx_016,24.4768,75.5232,42.5023,57.4977,9.19,224,0.875,bicubic
tf_efficientnet_lite0,24.3707,75.6293,42.5102,57.4898,4.65,224,0.875,bicubic
tv_resnet50,24.0917,75.9083,41.3095,58.6905,25.56,224,0.875,bilinear
seresnet34,24.0366,75.9634,41.8951,58.1049,21.96,224,0.875,bilinear
tv_densenet121,23.846,76.154,41.9207,58.0793,7.98,224,0.875,bicubic
tf_efficientnet_es,23.8244,76.1756,41.3193,58.6807,5.44,224,0.875,bicubic
mobilenetv2_140,23.7104,76.2896,41.4687,58.5313,6.11,224,0.875,bicubic
mixnet_m,23.7085,76.2915,41.1386,58.8614,5.01,224,0.875,bicubic
dla34,23.677,76.323,41.5434,58.4566,15.78,224,0.875,bilinear
seresnet50,23.6436,76.3564,40.0814,59.9186,28.09,224,0.875,bilinear
tf_mixnet_m,23.4786,76.5214,41.0049,58.9951,5.01,224,0.875,bicubic
tv_resnet34,23.4727,76.5273,41.3665,58.6335,21.8,224,0.875,bilinear
selecsls42b,23.3665,76.6335,40.6768,59.3232,32.46,224,0.875,bicubic
mobilenetv2_110d,23.0698,76.9302,40.7436,59.2564,4.52,224,0.875,bicubic
mobilenetv3_large_100,22.665,77.335,40.7848,59.2152,5.48,224,0.875,bicubic
mobilenetv3_rw,22.6257,77.3743,40.3702,59.6298,5.48,224,0.875,bicubic
tf_mobilenetv3_large_100,22.5707,77.4293,39.7591,60.2409,5.48,224,0.875,bilinear
hrnet_w18_small_v2,22.3408,77.6592,39.8475,60.1525,15.6,224,0.875,bilinear
regnety_008,22.1128,77.8872,38.8964,61.1036,6.26,224,0.875,bicubic
seresnext26tn_32x4d,22.0028,77.9972,38.4916,61.5084,16.81,224,0.875,bicubic
seresnext26t_32x4d,21.9871,78.0129,38.5663,61.4337,16.82,224,0.875,bicubic
regnety_006,21.9733,78.0267,38.9534,61.0466,6.06,224,0.875,bicubic
regnetx_008,21.9517,78.0483,38.9298,61.0702,7.26,224,0.875,bicubic
resnet26d,21.9144,78.0856,38.6174,61.3826,16.01,224,0.875,bicubic
semnasnet_100,21.8967,78.1033,38.6036,61.3964,3.89,224,0.875,bicubic
regnetx_006,21.7434,78.2566,38.9043,61.0957,6.2,224,0.875,bicubic
gluon_resnet18_v1b,21.5449,78.4551,38.8728,61.1272,11.69,224,0.875,bicubic
fbnetc_100,21.4919,78.5081,38.1654,61.8346,5.57,224,0.875,bilinear
mnasnet_100,21.3504,78.6496,37.7154,62.2846,4.38,224,0.875,bicubic
resnet26,21.2954,78.7046,38.0161,61.9839,16.0,224,0.875,bicubic
ssl_resnet18,21.2777,78.7223,39.1145,60.8855,11.69,224,0.875,bilinear
mixnet_s,21.258,78.742,38.1929,61.8071,4.13,224,0.875,bicubic
seresnext26d_32x4d,21.2541,78.7459,37.2851,62.7149,16.81,224,0.875,bicubic
seresnext26_32x4d,21.093,78.907,37.6388,62.3612,16.79,224,0.875,bicubic
regnetx_004,20.8866,79.1134,37.5484,62.4516,5.16,224,0.875,bicubic
spnasnet_100,20.867,79.133,37.8923,62.1077,4.42,224,0.875,bilinear
seresnet18,20.8395,79.1605,37.6447,62.3553,11.78,224,0.875,bicubic
mobilenetv2_100,20.7609,79.2391,37.7508,62.2492,3.5,224,0.875,bicubic
tf_mixnet_s,20.4779,79.5221,36.6268,63.3732,4.13,224,0.875,bicubic
regnety_004,20.417,79.583,37.0296,62.9704,4.34,224,0.875,bicubic
tf_mobilenetv3_large_075,20.3718,79.6282,36.7702,63.2298,3.99,224,0.875,bilinear
hrnet_w18_small,20.3659,79.6341,37.0945,62.9055,13.19,224,0.875,bilinear
resnet18,20.2283,79.7717,37.2595,62.7405,11.69,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,20.1163,79.8837,36.9038,63.0962,3.92,224,0.875,bilinear
regnety_002,17.4596,82.5404,32.4432,67.5568,3.16,224,0.875,bicubic
regnetx_002,16.9506,83.0494,32.2349,67.7651,2.68,224,0.875,bicubic
dla60x_c,16.3257,83.6743,31.775,68.225,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,16.2334,83.7666,31.2229,68.7771,2.54,224,0.875,bilinear
tf_mobilenetv3_small_075,14.9404,85.0596,29.5722,70.4278,2.04,224,0.875,bilinear
dla46_c,14.6613,85.3387,29.3737,70.6263,1.31,224,0.875,bilinear
dla46x_c,14.3803,85.6197,29.1772,70.8228,1.08,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,13.9677,86.0323,27.9805,72.0195,2.04,224,0.875,bilinear
model,rank_diff,top1,top1_diff,top1_err,top5,top5_diff,top5_err,param_count,img_size,cropt_pct,interpolation
ig_resnext101_32x48d,+5,58.814,-26.628,41.186,81.086,-16.486,18.914,828.41,224,0.875,bilinear
ig_resnext101_32x32d,+9,58.380,-26.712,41.620,80.379,-17.057,19.621,468.53,224,0.875,bilinear
ig_resnext101_32x16d,+14,57.700,-26.476,42.300,79.913,-17.283,20.087,194.03,224,0.875,bilinear
swsl_resnext101_32x16d,+18,57.466,-25.872,42.534,80.381,-16.471,19.619,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,+9,56.435,-27.859,43.565,78.934,-18.240,21.066,88.79,224,0.875,bilinear
ig_resnext101_32x8d,+23,54.918,-27.770,45.082,77.545,-19.087,22.455,88.79,224,0.875,bilinear
swsl_resnext101_32x4d,+17,53.591,-29.643,46.409,76.339,-20.417,23.661,44.18,224,0.875,bilinear
tf_efficientnet_l2_ns_475,-6,51.487,-36.747,48.513,73.930,-24.616,26.070,480.31,475,0.936,bicubic
swsl_resnext50_32x4d,+24,50.449,-31.731,49.551,73.358,-22.870,26.642,25.03,224,0.875,bilinear
swsl_resnet50,+38,49.551,-31.629,50.449,72.332,-23.654,27.668,25.56,224,0.875,bilinear
tf_efficientnet_b7_ns,-8,47.800,-39.038,52.200,69.638,-28.456,30.362,66.35,600,0.949,bicubic
tf_efficientnet_b6_ns,-8,47.751,-38.711,52.249,69.962,-27.922,30.038,43.04,528,0.942,bicubic
tf_efficientnet_l2_ns,-12,47.570,-40.782,52.430,70.017,-28.631,29.983,480.31,800,0.960,bicubic
tf_efficientnet_b8_ap,-6,45.778,-39.590,54.222,67.905,-29.389,32.095,87.41,672,0.954,bicubic
tf_efficientnet_b5_ns,-10,45.607,-40.473,54.393,67.852,-29.902,32.148,30.39,456,0.934,bicubic
tf_efficientnet_b4_ns,-7,43.455,-41.703,56.545,65.513,-31.955,34.487,19.34,380,0.922,bicubic
tf_efficientnet_b8,-10,42.502,-42.868,57.498,64.874,-32.518,35.126,87.41,672,0.954,bicubic
tf_efficientnet_b7,-6,41.437,-43.495,58.563,63.027,-34.181,36.973,66.35,600,0.949,bicubic
tf_efficientnet_b7_ap,-9,41.433,-43.685,58.567,62.876,-34.376,37.124,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,-5,41.420,-42.834,58.580,62.082,-34.894,37.918,30.39,456,0.934,bicubic
tf_efficientnet_b6_ap,-8,41.091,-43.695,58.909,62.359,-34.779,37.641,43.04,528,0.942,bicubic
tf_efficientnet_b4_ap,+1,40.476,-42.772,59.524,61.713,-34.675,38.287,19.34,380,0.922,bicubic
tf_efficientnet_b3_ns,-4,39.582,-44.472,60.418,61.463,-35.449,38.537,12.23,300,0.904,bicubic
tf_efficientnet_b5,-3,38.328,-45.488,61.672,59.928,-36.822,40.072,30.39,456,0.934,bicubic
tf_efficientnet_b3_ap,+13,37.061,-44.767,62.939,57.236,-38.388,42.764,12.23,300,0.904,bicubic
resnest269e,-10,36.670,-47.516,63.330,56.810,-40.112,43.190,110.93,416,0.875,bilinear
tf_efficientnet_b2_ns,+4,36.177,-46.203,63.823,57.555,-38.697,42.445,9.11,260,0.890,bicubic
ecaresnet101d,+6,36.006,-46.160,63.994,56.154,-39.898,43.846,44.57,224,0.875,bicubic
swsl_resnet18,+192,35.860,-37.426,64.140,58.437,-33.295,41.563,11.69,224,0.875,bilinear
resnest200e,-10,35.847,-47.987,64.153,55.890,-40.948,44.110,70.20,320,0.875,bilinear
resnest101e,-4,35.365,-47.525,64.635,55.786,-40.538,44.214,48.28,256,0.875,bilinear
ssl_resnext101_32x16d,+5,34.609,-47.227,65.391,55.914,-40.180,44.086,194.03,224,0.875,bilinear
resnest50d_4s2x40d,+16,34.361,-46.753,65.639,54.711,-40.857,45.289,30.42,224,0.875,bicubic
tf_efficientnet_b1_ns,+11,34.153,-47.233,65.847,55.489,-40.249,44.511,7.79,240,0.882,bicubic
tf_efficientnet_b4,-9,34.062,-48.954,65.938,54.216,-42.082,45.784,19.34,380,0.922,bicubic
ssl_resnext101_32x8d,+5,34.021,-47.605,65.979,55.593,-40.445,44.407,88.79,224,0.875,bilinear
tf_efficientnet_b6,-19,34.005,-50.107,65.995,54.540,-42.344,45.460,43.04,528,0.942,bicubic
efficientnet_b3_pruned,+18,33.996,-46.860,66.004,54.110,-41.130,45.890,9.86,300,0.904,bicubic
tresnet_xl,-4,33.259,-48.811,66.741,52.296,-43.632,47.704,78.44,224,0.875,bilinear
resnest50d_1s4x24d,+11,33.139,-47.851,66.861,52.831,-42.491,47.169,25.68,224,0.875,bicubic
resnest50d,+11,32.968,-47.990,67.032,52.701,-42.681,47.299,27.48,224,0.875,bilinear
tf_efficientnet_b3,-2,32.864,-48.776,67.136,52.962,-42.760,47.038,12.23,300,0.904,bicubic
inception_resnet_v2,+22,32.736,-47.724,67.264,50.640,-44.670,49.360,55.84,299,0.897,bicubic
gluon_resnet152_v1d,+20,32.730,-47.740,67.270,51.084,-44.122,48.916,60.21,224,0.875,bicubic
tf_efficientnet_b2_ap,+28,32.679,-47.627,67.321,52.233,-42.795,47.767,9.11,260,0.890,bicubic
nasnetalarge,-16,32.583,-49.975,67.417,49.787,-46.249,50.213,88.75,331,0.875,bicubic
tresnet_l,-3,32.567,-48.921,67.433,51.141,-44.487,48.859,55.99,224,0.875,bilinear
pnasnet5large,-20,32.532,-50.208,67.468,50.188,-45.852,49.812,86.06,331,0.875,bicubic
ens_adv_inception_resnet_v2,+34,32.370,-47.606,67.629,50.427,-44.519,49.573,55.84,299,0.897,bicubic
gluon_resnet152_v1s,=,32.331,-48.681,67.669,50.539,-44.877,49.461,60.32,224,0.875,bicubic
gluon_seresnext101_64x4d,+4,32.194,-48.696,67.806,50.327,-44.977,49.673,88.23,224,0.875,bicubic
gluon_seresnext101_32x4d,+2,32.115,-48.787,67.885,51.241,-44.053,48.759,48.96,224,0.875,bicubic
efficientnet_b3a,-17,31.728,-50.146,68.272,51.322,-44.518,48.678,12.23,320,1.000,bicubic
efficientnet_b3,-11,31.565,-49.933,68.435,51.272,-44.446,48.728,12.23,300,0.904,bicubic
resnet50,+64,31.545,-47.487,68.455,50.172,-44.212,49.828,25.56,224,0.875,bicubic
ssl_resnext101_32x4d,-3,31.433,-49.495,68.567,52.115,-43.613,47.885,44.18,224,0.875,bilinear
inception_v4,+22,31.382,-48.774,68.618,49.237,-45.737,50.763,42.68,299,0.875,bicubic
ecaresnetlight,+8,31.133,-49.321,68.868,50.252,-45.004,49.748,30.16,224,0.875,bicubic
gluon_resnet101_v1s,+15,31.113,-49.187,68.887,49.791,-45.359,50.209,44.67,224,0.875,bicubic
tf_efficientnet_cc_b0_8e,+98,31.081,-46.827,68.919,50.773,-42.883,49.227,24.01,224,0.875,bicubic
ecaresnet50d,=,31.064,-49.540,68.936,50.846,-44.476,49.154,25.58,224,0.875,bicubic
gluon_resnet152_v1c,+23,31.007,-48.909,68.993,48.936,-45.906,51.064,60.21,224,0.875,bicubic
tresnet_m,-4,30.993,-49.803,69.007,48.690,-46.166,51.310,31.39,224,0.875,bilinear
gluon_resnext101_64x4d,-2,30.981,-49.621,69.019,48.553,-46.441,51.447,83.46,224,0.875,bicubic
tf_efficientnet_cc_b1_8e,+42,30.901,-48.397,69.099,50.074,-44.290,49.926,39.72,240,0.882,bicubic
ecaresnet101d_pruned,-8,30.895,-49.913,69.105,50.001,-45.627,49.999,24.88,224,0.875,bicubic
gluon_resnext101_32x4d,+4,30.881,-49.453,69.119,48.537,-46.389,51.463,44.18,224,0.875,bicubic
tf_efficientnet_lite4,-26,30.840,-50.688,69.160,50.398,-45.270,49.602,13.01,380,0.920,bilinear
dpn107,+9,30.680,-49.484,69.320,48.806,-46.106,51.194,86.92,224,0.875,bicubic
ese_vovnet39b,+33,30.677,-48.643,69.323,49.893,-44.817,50.107,24.57,224,0.875,bicubic
tresnet_xl_448,-46,30.620,-52.428,69.380,49.072,-47.102,50.928,78.44,448,0.875,bilinear
gluon_resnet152_v1b,+22,30.618,-49.074,69.382,48.529,-46.209,51.471,60.19,224,0.875,bicubic
ssl_resnext50_32x4d,-1,30.594,-49.734,69.406,50.653,-44.751,49.347,25.03,224,0.875,bilinear
gluon_resnet101_v1d,-6,30.509,-49.915,69.490,47.975,-47.045,52.025,44.57,224,0.875,bicubic
resnest26d,+62,30.500,-47.982,69.500,50.677,-43.613,49.323,17.07,224,0.875,bilinear
efficientnet_b2a,-16,30.423,-50.185,69.577,49.675,-45.635,50.325,9.11,288,1.000,bicubic
tf_efficientnet_b1_ap,+32,30.419,-48.859,69.581,49.553,-44.755,50.447,7.79,240,0.882,bicubic
dpn98,+18,30.058,-49.578,69.942,48.240,-46.354,51.760,61.57,224,0.875,bicubic
tf_efficientnet_b2,+2,30.020,-50.070,69.980,49.590,-45.316,50.410,9.11,260,0.890,bicubic
dpn131,+9,30.014,-49.814,69.986,48.144,-46.560,51.856,79.25,224,0.875,bicubic
senet154,-35,30.001,-51.303,69.999,48.032,-47.466,51.968,115.09,224,0.875,bilinear
dpn92,=,29.969,-50.047,70.031,49.160,-45.678,50.840,37.67,224,0.875,bicubic
gluon_senet154,-36,29.887,-51.337,70.113,47.873,-47.483,52.127,115.09,224,0.875,bicubic
xception,+34,29.849,-49.199,70.151,48.690,-45.702,51.310,22.86,299,0.897,bicubic
adv_inception_v3,+80,29.824,-47.756,70.176,47.867,-45.857,52.133,23.83,299,0.875,bicubic
resnetblur50,+22,29.623,-49.667,70.377,48.250,-46.382,51.750,25.56,224,0.875,bicubic
efficientnet_b2,-18,29.617,-50.785,70.383,48.773,-46.303,51.227,9.11,260,0.875,bicubic
gluon_xception65,+9,29.555,-50.049,70.445,47.523,-47.225,52.477,39.92,299,0.875,bicubic
resnext101_32x8d,+15,29.435,-49.877,70.565,48.482,-46.044,51.518,88.79,224,0.875,bilinear
ssl_resnet50,+20,29.423,-49.805,70.577,49.773,-45.059,50.227,25.56,224,0.875,bilinear
resnext50_32x4d,=,29.328,-50.434,70.671,47.395,-47.205,52.605,25.03,224,0.875,bicubic
ecaresnet50d_pruned,=,29.216,-50.502,70.784,48.458,-46.432,51.542,19.94,224,0.875,bicubic
tresnet_l_448,-61,29.167,-53.101,70.833,47.234,-48.744,52.766,55.99,448,0.875,bilinear
gluon_inception_v3,+32,29.114,-49.690,70.886,46.943,-47.437,53.057,23.83,299,0.875,bicubic
hrnet_w64,+5,28.987,-50.485,71.013,47.140,-47.510,52.860,128.06,224,0.875,bilinear
tf_efficientnet_b0_ns,+37,28.914,-49.738,71.086,49.011,-45.357,50.989,5.29,224,0.875,bicubic
tf_efficientnet_b1,+28,28.892,-49.940,71.108,47.511,-46.685,52.489,7.79,240,0.882,bicubic
gluon_resnet101_v1b,+8,28.857,-50.447,71.143,46.371,-48.153,53.629,44.55,224,0.875,bicubic
skresnext50_32x4d,-19,28.818,-51.332,71.182,46.503,-48.141,53.497,27.48,224,0.875,bicubic
tf_efficientnet_lite3,-10,28.654,-51.158,71.346,47.358,-47.556,52.642,8.20,300,0.904,bilinear
hrnet_w40,+20,28.645,-50.289,71.355,47.443,-47.023,52.557,57.56,224,0.875,bilinear
gluon_seresnext50_32x4d,-16,28.641,-51.271,71.359,46.450,-48.368,53.550,27.56,224,0.875,bicubic
skresnet34,+81,28.629,-48.281,71.371,47.957,-45.359,52.043,22.28,224,0.875,bicubic
resnet152,+40,28.535,-49.777,71.465,47.114,-46.932,52.886,60.19,224,0.875,bilinear
hrnet_w48,=,28.407,-50.903,71.593,47.574,-46.944,52.426,77.47,224,0.875,bilinear
gluon_resnext50_32x4d,-4,28.383,-50.973,71.617,45.326,-49.098,54.674,25.03,224,0.875,bicubic
efficientnet_b2_pruned,-23,28.366,-51.552,71.634,47.059,-47.789,52.941,8.31,260,0.890,bicubic
tf_efficientnet_b0_ap,+72,28.350,-48.734,71.650,47.531,-45.723,52.469,5.29,224,0.875,bicubic
dla102x2,-8,28.319,-51.133,71.681,46.757,-47.887,53.243,41.75,224,0.875,bilinear
dla169,+19,28.311,-50.399,71.689,47.399,-46.939,52.601,53.99,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,+62,28.311,-48.993,71.689,47.364,-45.968,52.636,13.31,224,0.875,bicubic
mixnet_xl,-49,28.293,-52.185,71.707,46.717,-48.215,53.283,11.90,224,0.875,bicubic
gluon_resnet50_v1d,+3,28.236,-50.838,71.764,45.876,-48.600,54.124,25.58,224,0.875,bicubic
wide_resnet101_2,+10,28.106,-50.740,71.894,46.425,-47.859,53.575,126.89,224,0.875,bilinear
gluon_resnet101_v1c,-16,28.102,-51.442,71.898,45.953,-48.633,54.047,44.57,224,0.875,bicubic
densenet161,+56,28.100,-49.248,71.900,46.651,-46.997,53.349,28.68,224,0.875,bicubic
regnetx_320,-41,28.079,-52.167,71.921,45.120,-49.902,54.880,107.81,224,0.875,bicubic
regnety_320,-61,28.071,-52.743,71.929,45.460,-49.780,54.540,145.05,224,0.875,bicubic
dpn68b,+48,27.884,-49.630,72.116,47.460,-46.362,52.540,12.61,224,0.875,bicubic
regnetx_160,-32,27.825,-52.041,72.175,45.631,-49.197,54.369,54.28,224,0.875,bicubic
tf_inception_v3,+38,27.786,-50.070,72.214,45.711,-47.933,54.289,23.83,299,0.875,bicubic
res2net101_26w_4s,-8,27.774,-51.422,72.226,45.171,-49.269,54.829,45.21,224,0.875,bilinear
regnety_160,-48,27.639,-52.661,72.361,45.534,-49.428,54.466,83.59,224,0.875,bicubic
hrnet_w44,-2,27.625,-51.269,72.375,45.831,-48.539,54.169,67.06,224,0.875,bilinear
inception_v3,+45,27.570,-49.866,72.430,45.261,-48.215,54.739,23.83,299,0.875,bicubic
regnetx_080,-13,27.411,-51.787,72.589,45.022,-49.536,54.978,39.57,224,0.875,bicubic
hrnet_w30,+21,27.385,-50.811,72.615,46.542,-47.678,53.458,37.71,224,0.875,bilinear
hrnet_w32,+13,27.377,-51.071,72.623,45.990,-48.198,54.010,41.23,224,0.875,bilinear
gluon_resnet50_v1s,-1,27.326,-51.386,72.674,45.214,-49.028,54.786,25.68,224,0.875,bicubic
densenet201,+45,27.261,-50.029,72.739,46.224,-47.254,53.776,20.01,224,0.875,bicubic
regnety_064,-38,27.228,-52.484,72.772,44.851,-49.923,55.149,30.58,224,0.875,bicubic
densenetblur121d,+57,27.224,-49.352,72.776,46.307,-46.883,53.693,8.00,224,0.875,bicubic
efficientnet_b1_pruned,+13,27.195,-51.047,72.805,45.872,-47.960,54.128,6.33,240,0.882,bicubic
res2net50_26w_8s,-22,27.073,-52.137,72.927,44.432,-49.930,55.568,48.40,224,0.875,bilinear
dla102x,=,27.023,-51.485,72.977,45.495,-48.739,54.505,26.77,224,0.875,bilinear
resnet101,+35,26.968,-50.406,73.031,45.236,-48.310,54.764,44.55,224,0.875,bilinear
resnext50d_32x4d,-42,26.874,-52.800,73.126,44.430,-50.438,55.570,25.05,224,0.875,bicubic
regnetx_120,-40,26.864,-52.726,73.136,44.682,-50.058,55.318,46.11,224,0.875,bicubic
seresnext101_32x4d,-62,26.819,-53.417,73.181,43.508,-51.520,56.492,48.96,224,0.875,bilinear
densenet169,+55,26.811,-49.101,73.189,45.375,-47.649,54.625,14.15,224,0.875,bicubic
regnetx_064,-24,26.802,-52.264,73.198,44.904,-49.552,55.096,26.21,224,0.875,bicubic
regnety_120,-72,26.782,-53.600,73.218,44.440,-50.688,55.560,51.82,224,0.875,bicubic
regnetx_032,+6,26.707,-51.459,73.293,45.226,-48.854,54.774,15.30,224,0.875,bicubic
densenet121,+55,26.676,-48.898,73.324,45.900,-46.756,54.100,7.98,224,0.875,bicubic
seresnet152,-13,26.672,-51.986,73.328,43.945,-50.429,56.055,66.82,224,0.875,bilinear
tf_efficientnet_el,-79,26.623,-53.825,73.377,44.636,-50.524,55.364,10.59,300,0.904,bicubic
efficientnet_es,+4,26.617,-51.437,73.383,45.106,-48.824,54.894,5.44,224,0.875,bicubic
res2net50_26w_6s,-14,26.587,-51.987,73.413,43.978,-50.148,56.022,37.05,224,0.875,bilinear
dla60x,-4,26.564,-51.678,73.436,45.039,-48.983,54.961,17.65,224,0.875,bilinear
regnety_080,-63,26.515,-53.353,73.485,44.355,-50.477,55.645,39.18,224,0.875,bicubic
tf_efficientnet_b0,+34,26.491,-50.349,73.509,45.656,-47.570,54.344,5.29,224,0.875,bicubic
res2net50_14w_8s,-2,26.471,-51.681,73.529,44.369,-49.473,55.631,25.06,224,0.875,bilinear
gluon_resnet50_v1b,+13,26.432,-51.146,73.568,44.033,-49.685,55.967,25.56,224,0.875,bicubic
regnetx_040,-18,26.239,-52.247,73.760,44.424,-49.818,55.576,22.12,224,0.875,bicubic
dpn68,+37,26.122,-50.184,73.878,44.233,-48.737,55.767,12.61,224,0.875,bicubic
hrnet_w18,+30,25.976,-50.780,74.024,44.809,-48.633,55.191,21.30,224,0.875,bilinear
regnety_040,-46,25.913,-53.309,74.087,43.854,-50.802,56.146,20.65,224,0.875,bicubic
resnet34,+49,25.884,-49.228,74.116,43.990,-48.298,56.010,21.80,224,0.875,bilinear
res2net50_26w_4s,-2,25.870,-52.076,74.130,43.161,-50.691,56.839,25.70,224,0.875,bilinear
tresnet_m_448,-121,25.850,-55.862,74.150,42.868,-52.702,57.132,31.39,448,0.875,bilinear
gluon_resnet50_v1c,-8,25.795,-52.215,74.205,43.017,-50.971,56.983,25.58,224,0.875,bicubic
selecsls60,-6,25.729,-52.253,74.272,44.069,-49.763,55.931,30.67,224,0.875,bicubic
dla60_res2net,-25,25.642,-52.830,74.358,43.589,-50.615,56.411,21.15,224,0.875,bilinear
dla60_res2next,-24,25.638,-52.810,74.362,43.670,-50.474,56.330,17.33,224,0.875,bilinear
tf_efficientnet_lite1,+23,25.506,-51.132,74.493,43.583,-49.649,56.417,5.42,240,0.882,bicubic
mixnet_l,-46,25.499,-53.477,74.501,43.463,-50.721,56.537,7.33,224,0.875,bicubic
efficientnet_b1,-37,25.483,-53.215,74.517,43.286,-50.866,56.714,7.79,240,0.875,bicubic
tv_resnext50_32x4d,-5,25.469,-52.149,74.531,42.791,-50.907,57.209,25.03,224,0.875,bilinear
tf_mixnet_l,-42,25.420,-53.350,74.580,42.544,-51.460,57.456,7.33,224,0.875,bicubic
res2next50,-23,25.395,-52.847,74.606,42.492,-51.400,57.508,24.67,224,0.875,bilinear
selecsls60b,-29,25.328,-53.090,74.672,43.554,-50.612,56.446,32.77,224,0.875,bicubic
seresnet101,-29,25.328,-53.068,74.672,42.828,-51.430,57.172,49.33,224,0.875,bilinear
regnety_032,-50,25.324,-53.546,74.676,42.907,-51.495,57.093,19.44,224,0.875,bicubic
dla102,-22,25.314,-52.712,74.686,43.837,-50.113,56.163,33.73,224,0.875,bilinear
wide_resnet50_2,-36,25.310,-53.158,74.690,42.178,-51.908,57.822,68.88,224,0.875,bilinear
resnest14d,+25,25.282,-50.222,74.718,44.121,-48.393,55.879,10.61,224,0.875,bilinear
seresnext50_32x4d,-62,25.218,-53.858,74.782,41.938,-52.496,58.062,27.56,224,0.875,bilinear
res2net50_48w_2s,-10,25.023,-52.491,74.977,42.202,-51.346,57.798,25.29,224,0.875,bilinear
efficientnet_b0,-18,25.015,-52.677,74.985,42.785,-50.747,57.215,5.29,224,0.875,bicubic
gluon_resnet34_v1b,+35,24.948,-49.632,75.052,42.237,-49.751,57.763,21.80,224,0.875,bicubic
mobilenetv2_120d,-7,24.933,-52.361,75.067,43.064,-50.438,56.936,5.83,224,0.875,bicubic
dla60,-1,24.927,-52.097,75.073,43.302,-50.006,56.698,22.33,224,0.875,bilinear
regnety_016,-23,24.819,-53.033,75.181,42.626,-51.090,57.374,11.20,224,0.875,bicubic
tf_efficientnet_em,-53,24.534,-54.164,75.466,42.410,-51.910,57.590,6.90,240,0.882,bicubic
tf_efficientnet_lite2,-16,24.530,-52.930,75.470,42.292,-51.454,57.708,6.09,260,0.890,bicubic
skresnet18,+36,24.494,-48.550,75.505,42.538,-48.640,57.462,11.96,224,0.875,bicubic
regnetx_016,-4,24.477,-52.453,75.523,42.502,-50.916,57.498,9.19,224,0.875,bicubic
tf_efficientnet_lite0,+22,24.371,-50.471,75.629,42.510,-49.660,57.490,4.65,224,0.875,bicubic
tv_resnet50,+4,24.092,-52.038,75.908,41.309,-51.553,58.691,25.56,224,0.875,bilinear
seresnet34,+21,24.037,-50.771,75.963,41.895,-50.231,58.105,21.96,224,0.875,bilinear
tv_densenet121,+21,23.846,-50.906,76.154,41.921,-50.231,58.079,7.98,224,0.875,bicubic
tf_efficientnet_es,-16,23.824,-53.440,76.176,41.319,-52.281,58.681,5.44,224,0.875,bicubic
mobilenetv2_140,-3,23.710,-52.814,76.290,41.469,-51.521,58.531,6.11,224,0.875,bicubic
mixnet_m,-17,23.709,-53.547,76.291,41.139,-52.279,58.861,5.01,224,0.875,bicubic
dla34,+19,23.677,-50.959,76.323,41.543,-50.521,58.457,15.78,224,0.875,bilinear
seresnet50,-34,23.644,-53.992,76.356,40.081,-53.671,59.919,28.09,224,0.875,bilinear
tf_mixnet_m,-15,23.479,-53.471,76.521,41.005,-52.151,58.995,5.01,224,0.875,bicubic
tv_resnet34,+22,23.473,-49.841,76.527,41.367,-50.053,58.633,21.80,224,0.875,bilinear
selecsls42b,-21,23.366,-53.810,76.633,40.677,-52.715,59.323,32.46,224,0.875,bicubic
mobilenetv2_110d,+8,23.070,-51.982,76.930,40.744,-51.436,59.256,4.52,224,0.875,bicubic
mobilenetv3_large_100,-5,22.665,-53.103,77.335,40.785,-51.755,59.215,5.48,224,0.875,bicubic
mobilenetv3_rw,-4,22.626,-53.002,77.374,40.370,-52.340,59.630,5.48,224,0.875,bicubic
tf_mobilenetv3_large_100,-3,22.571,-52.945,77.429,39.759,-52.841,60.241,5.48,224,0.875,bilinear
hrnet_w18_small_v2,+1,22.341,-52.785,77.659,39.847,-52.569,60.153,15.60,224,0.875,bilinear
regnety_008,-14,22.113,-54.201,77.887,38.896,-54.166,61.104,6.26,224,0.875,bicubic
seresnext26tn_32x4d,-52,22.003,-55.987,77.997,38.492,-55.256,61.508,16.81,224,0.875,bicubic
seresnext26t_32x4d,-52,21.987,-56.001,78.013,38.566,-55.140,61.434,16.82,224,0.875,bicubic
regnety_006,-4,21.973,-53.287,78.027,38.953,-53.575,61.047,6.06,224,0.875,bicubic
regnetx_008,=,21.952,-53.070,78.048,38.930,-53.414,61.070,7.26,224,0.875,bicubic
resnet26d,-23,21.914,-54.766,78.086,38.617,-54.549,61.383,16.01,224,0.875,bicubic
semnasnet_100,-9,21.897,-53.559,78.103,38.604,-53.988,61.396,3.89,224,0.875,bicubic
regnetx_006,+6,21.743,-52.119,78.257,38.904,-52.776,61.096,6.20,224,0.875,bicubic
gluon_resnet18_v1b,+16,21.545,-49.285,78.455,38.873,-50.883,61.127,11.69,224,0.875,bicubic
fbnetc_100,-8,21.492,-53.628,78.508,38.165,-54.221,61.835,5.57,224,0.875,bilinear
mnasnet_100,-2,21.350,-53.306,78.650,37.715,-54.411,62.285,4.38,224,0.875,bicubic
resnet26,-13,21.295,-53.997,78.705,38.016,-54.554,61.984,16.00,224,0.875,bicubic
ssl_resnet18,+7,21.278,-51.322,78.722,39.114,-52.302,60.886,11.69,224,0.875,bilinear
mixnet_s,-24,21.258,-54.730,78.742,38.193,-54.601,61.807,4.13,224,0.875,bicubic
seresnext26d_32x4d,-55,21.254,-56.350,78.746,37.285,-56.327,62.715,16.81,224,0.875,bicubic
seresnext26_32x4d,-41,21.093,-56.007,78.907,37.639,-55.671,62.361,16.79,224,0.875,bicubic
regnetx_004,+4,20.887,-51.519,79.113,37.548,-53.282,62.452,5.16,224,0.875,bicubic
spnasnet_100,-6,20.867,-53.213,79.133,37.892,-53.940,62.108,4.42,224,0.875,bilinear
seresnet18,+5,20.840,-50.918,79.160,37.645,-52.689,62.355,11.78,224,0.875,bicubic
mobilenetv2_100,-1,20.761,-52.217,79.239,37.751,-53.265,62.249,3.50,224,0.875,bicubic
tf_mixnet_s,-28,20.478,-55.170,79.522,36.627,-56.009,63.373,4.13,224,0.875,bicubic
regnety_004,-9,20.417,-53.609,79.583,37.030,-54.718,62.970,4.34,224,0.875,bicubic
tf_mobilenetv3_large_075,-8,20.372,-53.070,79.628,36.770,-54.582,63.230,3.99,224,0.875,bilinear
hrnet_w18_small,-2,20.366,-51.976,79.634,37.094,-53.578,62.906,13.19,224,0.875,bilinear
resnet18,+2,20.228,-49.530,79.772,37.260,-51.818,62.740,11.69,224,0.875,bilinear
tf_mobilenetv3_large_minimal_100,-3,20.116,-52.128,79.884,36.904,-53.732,63.096,3.92,224,0.875,bilinear
regnety_002,-1,17.460,-52.822,82.540,32.443,-57.097,67.557,3.16,224,0.875,bicubic
regnetx_002,=,16.951,-51.803,83.049,32.235,-56.313,67.765,2.68,224,0.875,bicubic
dla60x_c,+1,16.326,-51.582,83.674,31.775,-56.659,68.225,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,-1,16.233,-51.685,83.767,31.223,-56.439,68.777,2.54,224,0.875,bilinear
tf_mobilenetv3_small_075,+1,14.940,-50.778,85.060,29.572,-56.564,70.428,2.04,224,0.875,bilinear
dla46_c,+1,14.661,-50.217,85.339,29.374,-56.912,70.626,1.31,224,0.875,bilinear
dla46x_c,-2,14.380,-51.600,85.620,29.177,-57.803,70.823,1.08,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,=,13.968,-48.930,86.032,27.980,-56.250,72.019,2.04,224,0.875,bilinear

1 model rank_diff top1 top1_diff top1_err top5 top5_diff top5_err param_count img_size cropt_pct interpolation
2 ig_resnext101_32x48d +5 58.8143 58.814 -26.628 41.1857 41.186 81.0863 81.086 -16.486 18.9137 18.914 828.41 224 0.875 bilinear
3 ig_resnext101_32x32d +9 58.38 58.380 -26.712 41.62 41.620 80.3789 80.379 -17.057 19.6211 19.621 468.53 224 0.875 bilinear
4 ig_resnext101_32x16d +14 57.7001 57.700 -26.476 42.2999 42.300 79.9131 79.913 -17.283 20.0869 20.087 194.03 224 0.875 bilinear
5 swsl_resnext101_32x16d +18 57.4663 57.466 -25.872 42.5337 42.534 80.3808 80.381 -16.471 19.6192 19.619 194.03 224 0.875 bilinear
6 swsl_resnext101_32x8d +9 56.4346 56.435 -27.859 43.5654 43.565 78.9345 78.934 -18.240 21.0655 21.066 88.79 224 0.875 bilinear
7 ig_resnext101_32x8d +23 54.9176 54.918 -27.770 45.0824 45.082 77.5452 77.545 -19.087 22.4548 22.455 88.79 224 0.875 bilinear
8 swsl_resnext101_32x4d +17 53.5911 53.591 -29.643 46.4089 46.409 76.3387 76.339 -20.417 23.6613 23.661 44.18 224 0.875 bilinear
9 tf_efficientnet_l2_ns_475 -6 51.4866 51.487 -36.747 48.5134 48.513 73.9295 73.930 -24.616 26.0705 26.070 480.31 475 0.936 bicubic
10 swsl_resnext50_32x4d +24 50.449 -31.731 49.551 73.3577 73.358 -22.870 26.6423 26.642 25.03 224 0.875 bilinear
11 swsl_resnet50 +38 49.551 -31.629 50.449 72.3319 72.332 -23.654 27.6681 27.668 25.56 224 0.875 bilinear
12 tf_efficientnet_b7_ns -8 47.8001 47.800 -39.038 52.1999 52.200 69.6378 69.638 -28.456 30.3622 30.362 66.35 600 0.949 bicubic
13 tf_efficientnet_b6_ns -8 47.751 -38.711 52.249 69.9621 69.962 -27.922 30.0379 30.038 43.04 528 0.942 bicubic
14 tf_efficientnet_l2_ns -12 47.5702 47.570 -40.782 52.4298 52.430 70.0171 70.017 -28.631 29.9829 29.983 480.31 800 0.96 0.960 bicubic
15 tf_efficientnet_b8_ap -6 45.7781 45.778 -39.590 54.2219 54.222 67.9047 67.905 -29.389 32.0953 32.095 87.41 672 0.954 bicubic
16 tf_efficientnet_b5_ns -10 45.6071 45.607 -40.473 54.3929 54.393 67.8516 67.852 -29.902 32.1484 32.148 30.39 456 0.934 bicubic
17 tf_efficientnet_b4_ns -7 43.4554 43.455 -41.703 56.5446 56.545 65.5132 65.513 -31.955 34.4868 34.487 19.34 380 0.922 bicubic
18 tf_efficientnet_b8 -10 42.5023 42.502 -42.868 57.4977 57.498 64.8745 64.874 -32.518 35.1255 35.126 87.41 672 0.954 bicubic
19 tf_efficientnet_b7 -6 41.4372 41.437 -43.495 58.5628 58.563 63.0274 63.027 -34.181 36.9726 36.973 66.35 600 0.949 bicubic
20 tf_efficientnet_b7_ap -9 41.4333 41.433 -43.685 58.5667 58.567 62.8761 62.876 -34.376 37.1239 37.124 66.35 600 0.949 bicubic
21 tf_efficientnet_b5_ap -5 41.4196 41.420 -42.834 58.5804 58.580 62.0822 62.082 -34.894 37.9178 37.918 30.39 456 0.934 bicubic
22 tf_efficientnet_b6_ap -8 41.0914 41.091 -43.695 58.9086 58.909 62.3593 62.359 -34.779 37.6407 37.641 43.04 528 0.942 bicubic
23 tf_efficientnet_b4_ap +1 40.4763 40.476 -42.772 59.5237 59.524 61.7127 61.713 -34.675 38.2873 38.287 19.34 380 0.922 bicubic
24 tf_efficientnet_b3_ns -4 39.5822 39.582 -44.472 60.4178 60.418 61.4632 61.463 -35.449 38.5368 38.537 12.23 300 0.904 bicubic
25 tf_efficientnet_b5 -3 38.3285 38.328 -45.488 61.6715 61.672 59.9285 59.928 -36.822 40.0715 40.072 30.39 456 0.934 bicubic
26 tf_efficientnet_b3_ap +13 37.0611 37.061 -44.767 62.9389 62.939 57.2363 57.236 -38.388 42.7637 42.764 12.23 300 0.904 bicubic
27 resnest269e -10 36.67 36.670 -47.516 63.33 63.330 56.8099 56.810 -40.112 43.1901 43.190 110.93 416 0.875 bilinear
28 tf_efficientnet_b2_ns +4 36.1768 36.177 -46.203 63.8232 63.823 57.5547 57.555 -38.697 42.4453 42.445 9.11 260 0.89 0.890 bicubic
29 ecaresnet101d +6 36.0058 36.006 -46.160 63.9942 63.994 56.1536 56.154 -39.898 43.8464 43.846 44.57 224 0.875 bicubic
30 swsl_resnet18 +192 35.8604 35.860 -37.426 64.1396 64.140 58.437 -33.295 41.563 11.69 224 0.875 bilinear
31 resnest200e -10 35.8466 35.847 -47.987 64.1534 64.153 55.8903 55.890 -40.948 44.1097 44.110 70.2 70.20 320 0.875 bilinear
32 resnest101e -4 35.3652 35.365 -47.525 64.6348 64.635 55.7861 55.786 -40.538 44.2139 44.214 48.28 256 0.875 bilinear
33 ssl_resnext101_32x16d +5 34.6087 34.609 -47.227 65.3913 65.391 55.9139 55.914 -40.180 44.0861 44.086 194.03 224 0.875 bilinear
34 resnest50d_4s2x40d +16 34.3611 34.361 -46.753 65.6389 65.639 54.7112 54.711 -40.857 45.2888 45.289 30.42 224 0.875 bicubic
35 tf_efficientnet_b1_ns +11 34.1528 34.153 -47.233 65.8472 65.847 55.4894 55.489 -40.249 44.5106 44.511 7.79 240 0.882 bicubic
36 tf_efficientnet_b4 -9 34.0624 34.062 -48.954 65.9376 65.938 54.216 -42.082 45.784 19.34 380 0.922 bicubic
37 ssl_resnext101_32x8d +5 34.0211 34.021 -47.605 65.9789 65.979 55.5935 55.593 -40.445 44.4065 44.407 88.79 224 0.875 bilinear
38 tf_efficientnet_b6 -19 34.0054 34.005 -50.107 65.9946 65.995 54.5403 54.540 -42.344 45.4597 45.460 43.04 528 0.942 bicubic
39 efficientnet_b3_pruned +18 33.9956 33.996 -46.860 66.0044 66.004 54.1099 54.110 -41.130 45.8901 45.890 9.86 300 0.904 bicubic
40 tresnet_xl -4 33.2587 33.259 -48.811 66.7413 66.741 52.2962 52.296 -43.632 47.7038 47.704 78.44 224 0.875 bilinear
41 resnest50d_1s4x24d +11 33.1388 33.139 -47.851 66.8612 66.861 52.8307 52.831 -42.491 47.1693 47.169 25.68 224 0.875 bicubic
42 resnest50d +11 32.9678 32.968 -47.990 67.0322 67.032 52.701 -42.681 47.299 27.48 224 0.875 bilinear
43 tf_efficientnet_b3 -2 32.8637 32.864 -48.776 67.1363 67.136 52.9623 52.962 -42.760 47.0377 47.038 12.23 300 0.904 bicubic
44 inception_resnet_v2 +22 32.736 -47.724 67.264 50.6396 50.640 -44.670 49.3604 49.360 55.84 299 0.8975 0.897 bicubic
45 gluon_resnet152_v1d +20 32.7301 32.730 -47.740 67.2699 67.270 51.0837 51.084 -44.122 48.9163 48.916 60.21 224 0.875 bicubic
46 tf_efficientnet_b2_ap +28 32.679 -47.627 67.321 52.2333 52.233 -42.795 47.7667 47.767 9.11 260 0.89 0.890 bicubic
47 nasnetalarge -16 32.5827 32.583 -49.975 67.4173 67.417 49.7868 49.787 -46.249 50.2132 50.213 88.75 331 0.875 bicubic
48 tresnet_l -3 32.567 -48.921 67.433 51.1407 51.141 -44.487 48.8593 48.859 55.99 224 0.875 bilinear
49 pnasnet5large -20 32.5316 32.532 -50.208 67.4684 67.468 50.1877 50.188 -45.852 49.8123 49.812 86.06 331 0.875 bicubic
50 ens_adv_inception_resnet_v2 +34 32.3705 32.370 -47.606 67.6295 67.629 50.4274 50.427 -44.519 49.5726 49.573 55.84 299 0.8975 0.897 bicubic
51 gluon_resnet152_v1s = 32.3312 32.331 -48.681 67.6688 67.669 50.5394 50.539 -44.877 49.4606 49.461 60.32 224 0.875 bicubic
52 gluon_seresnext101_64x4d +4 32.1936 32.194 -48.696 67.8064 67.806 50.3272 50.327 -44.977 49.6728 49.673 88.23 224 0.875 bicubic
53 gluon_seresnext101_32x4d +2 32.115 -48.787 67.885 51.2409 51.241 -44.053 48.7591 48.759 48.96 224 0.875 bicubic
54 efficientnet_b3a -17 31.7279 31.728 -50.146 68.2721 68.272 51.3215 51.322 -44.518 48.6785 48.678 12.23 320 1.0 1.000 bicubic
55 efficientnet_b3 -11 31.5648 31.565 -49.933 68.4352 68.435 51.2724 51.272 -44.446 48.7276 48.728 12.23 300 0.904 bicubic
56 resnet50 +64 31.5451 31.545 -47.487 68.4549 68.455 50.1719 50.172 -44.212 49.8281 49.828 25.56 224 0.875 bicubic
57 ssl_resnext101_32x4d -3 31.4331 31.433 -49.495 68.5669 68.567 52.1154 52.115 -43.613 47.8846 47.885 44.18 224 0.875 bilinear
58 inception_v4 +22 31.382 -48.774 68.618 49.2366 49.237 -45.737 50.7634 50.763 42.68 299 0.875 bicubic
59 ecaresnetlight +8 31.1325 31.133 -49.321 68.8675 68.868 50.2525 50.252 -45.004 49.7475 49.748 30.16 224 0.875 bicubic
60 gluon_resnet101_v1s +15 31.1128 31.113 -49.187 68.8872 68.887 49.7907 49.791 -45.359 50.2093 50.209 44.67 224 0.875 bicubic
61 tf_efficientnet_cc_b0_8e +98 31.0814 31.081 -46.827 68.9186 68.919 50.7733 50.773 -42.883 49.2267 49.227 24.01 224 0.875 bicubic
62 ecaresnet50d = 31.0637 31.064 -49.540 68.9363 68.936 50.846 -44.476 49.154 25.58 224 0.875 bicubic
63 gluon_resnet152_v1c +23 31.0067 31.007 -48.909 68.9933 68.993 48.9359 48.936 -45.906 51.0641 51.064 60.21 224 0.875 bicubic
64 tresnet_m -4 30.9929 30.993 -49.803 69.0071 69.007 48.6903 48.690 -46.166 51.3097 51.310 31.39 224 0.875 bilinear
65 gluon_resnext101_64x4d -2 30.9812 30.981 -49.621 69.0188 69.019 48.5527 48.553 -46.441 51.4473 51.447 83.46 224 0.875 bicubic
66 tf_efficientnet_cc_b1_8e +42 30.9006 30.901 -48.397 69.0994 69.099 50.0737 50.074 -44.290 49.9263 49.926 39.72 240 0.882 bicubic
67 ecaresnet101d_pruned -8 30.8947 30.895 -49.913 69.1053 69.105 50.001 -45.627 49.999 24.88 224 0.875 bicubic
68 gluon_resnext101_32x4d +4 30.8809 30.881 -49.453 69.1191 69.119 48.537 -46.389 51.463 44.18 224 0.875 bicubic
69 tf_efficientnet_lite4 -26 30.8397 30.840 -50.688 69.1603 69.160 50.3979 50.398 -45.270 49.6021 49.602 13.01 380 0.92 0.920 bilinear
70 dpn107 +9 30.6805 30.680 -49.484 69.3195 69.320 48.8062 48.806 -46.106 51.1938 51.194 86.92 224 0.875 bicubic
71 ese_vovnet39b +33 30.6766 30.677 -48.643 69.3234 69.323 49.8929 49.893 -44.817 50.1071 50.107 24.57 224 0.875 bicubic
72 tresnet_xl_448 -46 30.6196 30.620 -52.428 69.3804 69.380 49.0715 49.072 -47.102 50.9285 50.928 78.44 448 0.875 bilinear
73 gluon_resnet152_v1b +22 30.6176 30.618 -49.074 69.3824 69.382 48.5292 48.529 -46.209 51.4708 51.471 60.19 224 0.875 bicubic
74 ssl_resnext50_32x4d -1 30.594 -49.734 69.406 50.6534 50.653 -44.751 49.3466 49.347 25.03 224 0.875 bilinear
75 gluon_resnet101_v1d -6 30.5095 30.509 -49.915 69.4905 69.490 47.975 -47.045 52.025 44.57 224 0.875 bicubic
76 resnest26d +62 30.4997 30.500 -47.982 69.5003 69.500 50.677 -43.613 49.323 17.07 224 0.875 bilinear
77 efficientnet_b2a -16 30.4231 30.423 -50.185 69.5769 69.577 49.6748 49.675 -45.635 50.3252 50.325 9.11 288 1.0 1.000 bicubic
78 tf_efficientnet_b1_ap +32 30.4191 30.419 -48.859 69.5809 69.581 49.5529 49.553 -44.755 50.4471 50.447 7.79 240 0.882 bicubic
79 dpn98 +18 30.0576 30.058 -49.578 69.9424 69.942 48.2403 48.240 -46.354 51.7597 51.760 61.57 224 0.875 bicubic
80 tf_efficientnet_b2 +2 30.0202 30.020 -50.070 69.9798 69.980 49.5903 49.590 -45.316 50.4097 50.410 9.11 260 0.89 0.890 bicubic
81 dpn131 +9 30.0143 30.014 -49.814 69.9857 69.986 48.144 -46.560 51.856 79.25 224 0.875 bicubic
82 senet154 -35 30.0006 30.001 -51.303 69.9994 69.999 48.032 -47.466 51.968 115.09 224 0.875 bilinear
83 dpn92 = 29.9691 29.969 -50.047 70.0309 70.031 49.1599 49.160 -45.678 50.8401 50.840 37.67 224 0.875 bicubic
84 gluon_senet154 -36 29.8866 29.887 -51.337 70.1134 70.113 47.8728 47.873 -47.483 52.1272 52.127 115.09 224 0.875 bicubic
85 xception +34 29.8493 29.849 -49.199 70.1507 70.151 48.6903 48.690 -45.702 51.3097 51.310 22.86 299 0.8975 0.897 bicubic
86 adv_inception_v3 +80 29.8237 29.824 -47.756 70.1763 70.176 47.8669 47.867 -45.857 52.1331 52.133 23.83 299 0.875 bicubic
87 resnetblur50 +22 29.6233 29.623 -49.667 70.3767 70.377 48.2501 48.250 -46.382 51.7499 51.750 25.56 224 0.875 bicubic
88 efficientnet_b2 -18 29.6174 29.617 -50.785 70.3826 70.383 48.7728 48.773 -46.303 51.2272 51.227 9.11 260 0.875 bicubic
89 gluon_xception65 +9 29.5545 29.555 -50.049 70.4455 70.445 47.523 -47.225 52.477 39.92 299 0.875 bicubic
90 resnext101_32x8d +15 29.4347 29.435 -49.877 70.5653 70.565 48.482 -46.044 51.518 88.79 224 0.875 bilinear
91 ssl_resnet50 +20 29.4229 29.423 -49.805 70.5771 70.577 49.773 -45.059 50.227 25.56 224 0.875 bilinear
92 resnext50_32x4d = 29.3285 29.328 -50.434 70.6715 70.671 47.3953 47.395 -47.205 52.6047 52.605 25.03 224 0.875 bicubic
93 ecaresnet50d_pruned = 29.2165 29.216 -50.502 70.7835 70.784 48.4584 48.458 -46.432 51.5416 51.542 19.94 224 0.875 bicubic
94 tresnet_l_448 -61 29.1674 29.167 -53.101 70.8326 70.833 47.2342 47.234 -48.744 52.7658 52.766 55.99 448 0.875 bilinear
95 gluon_inception_v3 +32 29.1143 29.114 -49.690 70.8857 70.886 46.9433 46.943 -47.437 53.0567 53.057 23.83 299 0.875 bicubic
96 hrnet_w64 +5 28.9866 28.987 -50.485 71.0134 71.013 47.1399 47.140 -47.510 52.8601 52.860 128.06 224 0.875 bilinear
97 tf_efficientnet_b0_ns +37 28.9139 28.914 -49.738 71.0861 71.086 49.0106 49.011 -45.357 50.9894 50.989 5.29 224 0.875 bicubic
98 tf_efficientnet_b1 +28 28.8923 28.892 -49.940 71.1077 71.108 47.5112 47.511 -46.685 52.4888 52.489 7.79 240 0.882 bicubic
99 gluon_resnet101_v1b +8 28.8569 28.857 -50.447 71.1431 71.143 46.3715 46.371 -48.153 53.6285 53.629 44.55 224 0.875 bicubic
100 skresnext50_32x4d -19 28.8176 28.818 -51.332 71.1824 71.182 46.5032 46.503 -48.141 53.4968 53.497 27.48 224 0.875 bicubic
101 tf_efficientnet_lite3 -10 28.6545 28.654 -51.158 71.3455 71.346 47.358 -47.556 52.642 8.2 8.20 300 0.904 bilinear
102 hrnet_w40 +20 28.6447 28.645 -50.289 71.3553 71.355 47.4425 47.443 -47.023 52.5575 52.557 57.56 224 0.875 bilinear
103 gluon_seresnext50_32x4d -16 28.6408 28.641 -51.271 71.3592 71.359 46.4501 46.450 -48.368 53.5499 53.550 27.56 224 0.875 bicubic
104 skresnet34 +81 28.629 -48.281 71.371 47.9573 47.957 -45.359 52.0427 52.043 22.28 224 0.875 bicubic
105 resnet152 +40 28.5347 28.535 -49.777 71.4653 71.465 47.1143 47.114 -46.932 52.8857 52.886 60.19 224 0.875 bilinear
106 hrnet_w48 = 28.4069 28.407 -50.903 71.5931 71.593 47.5741 47.574 -46.944 52.4259 52.426 77.47 224 0.875 bilinear
107 gluon_resnext50_32x4d -4 28.3833 28.383 -50.973 71.6167 71.617 45.3261 45.326 -49.098 54.6739 54.674 25.03 224 0.875 bicubic
108 efficientnet_b2_pruned -23 28.3657 28.366 -51.552 71.6343 71.634 47.0593 47.059 -47.789 52.9407 52.941 8.31 260 0.89 0.890 bicubic
109 tf_efficientnet_b0_ap +72 28.3499 28.350 -48.734 71.6501 71.650 47.5309 47.531 -45.723 52.4691 52.469 5.29 224 0.875 bicubic
110 dla102x2 -8 28.3185 28.319 -51.133 71.6815 71.681 46.7567 46.757 -47.887 53.2433 53.243 41.75 224 0.875 bilinear
111 dla169 +19 28.3106 28.311 -50.399 71.6894 71.689 47.3992 47.399 -46.939 52.6008 52.601 53.99 224 0.875 bilinear
112 tf_efficientnet_cc_b0_4e +62 28.3106 28.311 -48.993 71.6894 71.689 47.3639 47.364 -45.968 52.6361 52.636 13.31 224 0.875 bicubic
113 mixnet_xl -49 28.293 -52.185 71.707 46.7174 46.717 -48.215 53.2826 53.283 11.9 11.90 224 0.875 bicubic
114 gluon_resnet50_v1d +3 28.236 -50.838 71.764 45.8763 45.876 -48.600 54.1237 54.124 25.58 224 0.875 bicubic
115 wide_resnet101_2 +10 28.1063 28.106 -50.740 71.8937 71.894 46.4246 46.425 -47.859 53.5754 53.575 126.89 224 0.875 bilinear
116 gluon_resnet101_v1c -16 28.1023 28.102 -51.442 71.8977 71.898 45.953 -48.633 54.047 44.57 224 0.875 bicubic
117 densenet161 +56 28.1004 28.100 -49.248 71.8996 71.900 46.6506 46.651 -46.997 53.3494 53.349 28.68 224 0.875 bicubic
118 regnetx_320 -41 28.0788 28.079 -52.167 71.9212 71.921 45.1198 45.120 -49.902 54.8802 54.880 107.81 224 0.875 bicubic
119 regnety_320 -61 28.0709 28.071 -52.743 71.9291 71.929 45.4597 45.460 -49.780 54.5403 54.540 145.05 224 0.875 bicubic
120 dpn68b +48 27.8842 27.884 -49.630 72.1158 72.116 47.4602 47.460 -46.362 52.5398 52.540 12.61 224 0.875 bicubic
121 regnetx_160 -32 27.8253 27.825 -52.041 72.1747 72.175 45.6307 45.631 -49.197 54.3693 54.369 54.28 224 0.875 bicubic
122 tf_inception_v3 +38 27.786 -50.070 72.214 45.7113 45.711 -47.933 54.2887 54.289 23.83 299 0.875 bicubic
123 res2net101_26w_4s -8 27.7742 27.774 -51.422 72.2258 72.226 45.1709 45.171 -49.269 54.8291 54.829 45.21 224 0.875 bilinear
124 regnety_160 -48 27.6386 27.639 -52.661 72.3614 72.361 45.5344 45.534 -49.428 54.4656 54.466 83.59 224 0.875 bicubic
125 hrnet_w44 -2 27.6248 27.625 -51.269 72.3752 72.375 45.8311 45.831 -48.539 54.1689 54.169 67.06 224 0.875 bilinear
126 inception_v3 +45 27.5698 27.570 -49.866 72.4302 72.430 45.2613 45.261 -48.215 54.7387 54.739 23.83 299 0.875 bicubic
127 regnetx_080 -13 27.4106 27.411 -51.787 72.5894 72.589 45.0215 45.022 -49.536 54.9785 54.978 39.57 224 0.875 bicubic
128 hrnet_w30 +21 27.3851 27.385 -50.811 72.6149 72.615 46.5425 46.542 -47.678 53.4575 53.458 37.71 224 0.875 bilinear
129 hrnet_w32 +13 27.3772 27.377 -51.071 72.6228 72.623 45.9903 45.990 -48.198 54.0097 54.010 41.23 224 0.875 bilinear
130 gluon_resnet50_v1s -1 27.3261 27.326 -51.386 72.6739 72.674 45.2141 45.214 -49.028 54.7859 54.786 25.68 224 0.875 bicubic
131 densenet201 +45 27.2613 27.261 -50.029 72.7387 72.739 46.2241 46.224 -47.254 53.7759 53.776 20.01 224 0.875 bicubic
132 regnety_064 -38 27.2279 27.228 -52.484 72.7721 72.772 44.8506 44.851 -49.923 55.1494 55.149 30.58 224 0.875 bicubic
133 densenetblur121d +57 27.224 -49.352 72.776 46.3067 46.307 -46.883 53.6933 53.693 8.0 8.00 224 0.875 bicubic
134 efficientnet_b1_pruned +13 27.1945 27.195 -51.047 72.8055 72.805 45.8724 45.872 -47.960 54.1276 54.128 6.33 240 0.882 bicubic
135 res2net50_26w_8s -22 27.0726 27.073 -52.137 72.9274 72.927 44.432 -49.930 55.568 48.4 48.40 224 0.875 bilinear
136 dla102x = 27.0235 27.023 -51.485 72.9765 72.977 45.4951 45.495 -48.739 54.5049 54.505 26.77 224 0.875 bilinear
137 resnet101 +35 26.9685 26.968 -50.406 73.0315 73.031 45.2357 45.236 -48.310 54.7643 54.764 44.55 224 0.875 bilinear
138 resnext50d_32x4d -42 26.8742 26.874 -52.800 73.1258 73.126 44.43 44.430 -50.438 55.57 55.570 25.05 224 0.875 bicubic
139 regnetx_120 -40 26.8644 26.864 -52.726 73.1356 73.136 44.6816 44.682 -50.058 55.3184 55.318 46.11 224 0.875 bicubic
140 seresnext101_32x4d -62 26.8192 26.819 -53.417 73.1808 73.181 43.5084 43.508 -51.520 56.4916 56.492 48.96 224 0.875 bilinear
141 densenet169 +55 26.8113 26.811 -49.101 73.1887 73.189 45.3752 45.375 -47.649 54.6248 54.625 14.15 224 0.875 bicubic
142 regnetx_064 -24 26.8015 26.802 -52.264 73.1985 73.198 44.9036 44.904 -49.552 55.0964 55.096 26.21 224 0.875 bicubic
143 regnety_120 -72 26.7818 26.782 -53.600 73.2182 73.218 44.4399 44.440 -50.688 55.5601 55.560 51.82 224 0.875 bicubic
144 regnetx_032 +6 26.7071 26.707 -51.459 73.2929 73.293 45.2259 45.226 -48.854 54.7741 54.774 15.3 15.30 224 0.875 bicubic
145 densenet121 +55 26.6757 26.676 -48.898 73.3243 73.324 45.8999 45.900 -46.756 54.1001 54.100 7.98 224 0.875 bicubic
146 seresnet152 -13 26.6718 26.672 -51.986 73.3282 73.328 43.9447 43.945 -50.429 56.0553 56.055 66.82 224 0.875 bilinear
147 tf_efficientnet_el -79 26.6226 26.623 -53.825 73.3774 73.377 44.6364 44.636 -50.524 55.3636 55.364 10.59 300 0.904 bicubic
148 efficientnet_es +4 26.6168 26.617 -51.437 73.3832 73.383 45.106 -48.824 54.894 5.44 224 0.875 bicubic
149 res2net50_26w_6s -14 26.5873 26.587 -51.987 73.4127 73.413 43.9781 43.978 -50.148 56.0219 56.022 37.05 224 0.875 bilinear
150 dla60x -4 26.5637 26.564 -51.678 73.4363 73.436 45.0392 45.039 -48.983 54.9608 54.961 17.65 224 0.875 bilinear
151 regnety_080 -63 26.5146 26.515 -53.353 73.4854 73.485 44.3554 44.355 -50.477 55.6446 55.645 39.18 224 0.875 bicubic
152 tf_efficientnet_b0 +34 26.491 -50.349 73.509 45.6562 45.656 -47.570 54.3438 54.344 5.29 224 0.875 bicubic
153 res2net50_14w_8s -2 26.4713 26.471 -51.681 73.5287 73.529 44.3691 44.369 -49.473 55.6309 55.631 25.06 224 0.875 bilinear
154 gluon_resnet50_v1b +13 26.432 -51.146 73.568 44.0331 44.033 -49.685 55.9669 55.967 25.56 224 0.875 bicubic
155 regnetx_040 -18 26.2395 26.239 -52.247 73.7605 73.760 44.4241 44.424 -49.818 55.5759 55.576 22.12 224 0.875 bicubic
156 dpn68 +37 26.1216 26.122 -50.184 73.8784 73.878 44.2335 44.233 -48.737 55.7665 55.767 12.61 224 0.875 bicubic
157 hrnet_w18 +30 25.9761 25.976 -50.780 74.0239 74.024 44.8093 44.809 -48.633 55.1907 55.191 21.3 21.30 224 0.875 bilinear
158 regnety_040 -46 25.9133 25.913 -53.309 74.0867 74.087 43.8543 43.854 -50.802 56.1457 56.146 20.65 224 0.875 bicubic
159 resnet34 +49 25.8838 25.884 -49.228 74.1162 74.116 43.9899 43.990 -48.298 56.0101 56.010 21.8 21.80 224 0.875 bilinear
160 res2net50_26w_4s -2 25.87 25.870 -52.076 74.13 74.130 43.1606 43.161 -50.691 56.8394 56.839 25.7 25.70 224 0.875 bilinear
161 tresnet_m_448 -121 25.8504 25.850 -55.862 74.1496 74.150 42.8678 42.868 -52.702 57.1322 57.132 31.39 448 0.875 bilinear
162 gluon_resnet50_v1c -8 25.7954 25.795 -52.215 74.2046 74.205 43.0172 43.017 -50.971 56.9828 56.983 25.58 224 0.875 bicubic
163 selecsls60 -6 25.7285 25.729 -52.253 74.2715 74.272 44.0685 44.069 -49.763 55.9315 55.931 30.67 224 0.875 bicubic
164 dla60_res2net -25 25.6421 25.642 -52.830 74.3579 74.358 43.589 -50.615 56.411 21.15 224 0.875 bilinear
165 dla60_res2next -24 25.6382 25.638 -52.810 74.3618 74.362 43.6696 43.670 -50.474 56.3304 56.330 17.33 224 0.875 bilinear
166 tf_efficientnet_lite1 +23 25.5065 25.506 -51.132 74.4935 74.493 43.5831 43.583 -49.649 56.4169 56.417 5.42 240 0.882 bicubic
167 mixnet_l -46 25.4986 25.499 -53.477 74.5014 74.501 43.4632 43.463 -50.721 56.5368 56.537 7.33 224 0.875 bicubic
168 efficientnet_b1 -37 25.4829 25.483 -53.215 74.5171 74.517 43.2864 43.286 -50.866 56.7136 56.714 7.79 240 0.875 bicubic
169 tv_resnext50_32x4d -5 25.4692 25.469 -52.149 74.5308 74.531 42.7912 42.791 -50.907 57.2088 57.209 25.03 224 0.875 bilinear
170 tf_mixnet_l -42 25.42 25.420 -53.350 74.58 74.580 42.5436 42.544 -51.460 57.4564 57.456 7.33 224 0.875 bicubic
171 res2next50 -23 25.3945 25.395 -52.847 74.6055 74.606 42.4925 42.492 -51.400 57.5075 57.508 24.67 224 0.875 bilinear
172 selecsls60b -29 25.3277 25.328 -53.090 74.6723 74.672 43.5536 43.554 -50.612 56.4464 56.446 32.77 224 0.875 bicubic
173 seresnet101 -29 25.3277 25.328 -53.068 74.6723 74.672 42.8285 42.828 -51.430 57.1715 57.172 49.33 224 0.875 bilinear
174 regnety_032 -50 25.3237 25.324 -53.546 74.6763 74.676 42.9071 42.907 -51.495 57.0929 57.093 19.44 224 0.875 bicubic
175 dla102 -22 25.3139 25.314 -52.712 74.6861 74.686 43.8366 43.837 -50.113 56.1634 56.163 33.73 224 0.875 bilinear
176 wide_resnet50_2 -36 25.31 25.310 -53.158 74.69 74.690 42.1781 42.178 -51.908 57.8219 57.822 68.88 224 0.875 bilinear
177 resnest14d +25 25.2825 25.282 -50.222 74.7175 74.718 44.1215 44.121 -48.393 55.8785 55.879 10.61 224 0.875 bilinear
178 seresnext50_32x4d -62 25.2176 25.218 -53.858 74.7824 74.782 41.9383 41.938 -52.496 58.0617 58.062 27.56 224 0.875 bilinear
179 res2net50_48w_2s -10 25.0231 25.023 -52.491 74.9769 74.977 42.2017 42.202 -51.346 57.7983 57.798 25.29 224 0.875 bilinear
180 efficientnet_b0 -18 25.0152 25.015 -52.677 74.9848 74.985 42.7853 42.785 -50.747 57.2147 57.215 5.29 224 0.875 bicubic
181 gluon_resnet34_v1b +35 24.9484 24.948 -49.632 75.0516 75.052 42.237 -49.751 57.763 21.8 21.80 224 0.875 bicubic
182 mobilenetv2_120d -7 24.9327 24.933 -52.361 75.0673 75.067 43.0643 43.064 -50.438 56.9357 56.936 5.83 224 0.875 bicubic
183 dla60 -1 24.9268 24.927 -52.097 75.0732 75.073 43.3021 43.302 -50.006 56.6979 56.698 22.33 224 0.875 bilinear
184 regnety_016 -23 24.8187 24.819 -53.033 75.1813 75.181 42.6261 42.626 -51.090 57.3739 57.374 11.2 11.20 224 0.875 bicubic
185 tf_efficientnet_em -53 24.5338 24.534 -54.164 75.4662 75.466 42.41 42.410 -51.910 57.59 57.590 6.9 6.90 240 0.882 bicubic
186 tf_efficientnet_lite2 -16 24.5299 24.530 -52.930 75.4701 75.470 42.292 -51.454 57.708 6.09 260 0.89 0.890 bicubic
187 skresnet18 +36 24.4945 24.494 -48.550 75.5055 75.505 42.5377 42.538 -48.640 57.4623 57.462 11.96 224 0.875 bicubic
188 regnetx_016 -4 24.4768 24.477 -52.453 75.5232 75.523 42.5023 42.502 -50.916 57.4977 57.498 9.19 224 0.875 bicubic
189 tf_efficientnet_lite0 +22 24.3707 24.371 -50.471 75.6293 75.629 42.5102 42.510 -49.660 57.4898 57.490 4.65 224 0.875 bicubic
190 tv_resnet50 +4 24.0917 24.092 -52.038 75.9083 75.908 41.3095 41.309 -51.553 58.6905 58.691 25.56 224 0.875 bilinear
191 seresnet34 +21 24.0366 24.037 -50.771 75.9634 75.963 41.8951 41.895 -50.231 58.1049 58.105 21.96 224 0.875 bilinear
192 tv_densenet121 +21 23.846 -50.906 76.154 41.9207 41.921 -50.231 58.0793 58.079 7.98 224 0.875 bicubic
193 tf_efficientnet_es -16 23.8244 23.824 -53.440 76.1756 76.176 41.3193 41.319 -52.281 58.6807 58.681 5.44 224 0.875 bicubic
194 mobilenetv2_140 -3 23.7104 23.710 -52.814 76.2896 76.290 41.4687 41.469 -51.521 58.5313 58.531 6.11 224 0.875 bicubic
195 mixnet_m -17 23.7085 23.709 -53.547 76.2915 76.291 41.1386 41.139 -52.279 58.8614 58.861 5.01 224 0.875 bicubic
196 dla34 +19 23.677 -50.959 76.323 41.5434 41.543 -50.521 58.4566 58.457 15.78 224 0.875 bilinear
197 seresnet50 -34 23.6436 23.644 -53.992 76.3564 76.356 40.0814 40.081 -53.671 59.9186 59.919 28.09 224 0.875 bilinear
198 tf_mixnet_m -15 23.4786 23.479 -53.471 76.5214 76.521 41.0049 41.005 -52.151 58.9951 58.995 5.01 224 0.875 bicubic
199 tv_resnet34 +22 23.4727 23.473 -49.841 76.5273 76.527 41.3665 41.367 -50.053 58.6335 58.633 21.8 21.80 224 0.875 bilinear
200 selecsls42b -21 23.3665 23.366 -53.810 76.6335 76.633 40.6768 40.677 -52.715 59.3232 59.323 32.46 224 0.875 bicubic
201 mobilenetv2_110d +8 23.0698 23.070 -51.982 76.9302 76.930 40.7436 40.744 -51.436 59.2564 59.256 4.52 224 0.875 bicubic
202 mobilenetv3_large_100 -5 22.665 -53.103 77.335 40.7848 40.785 -51.755 59.2152 59.215 5.48 224 0.875 bicubic
203 mobilenetv3_rw -4 22.6257 22.626 -53.002 77.3743 77.374 40.3702 40.370 -52.340 59.6298 59.630 5.48 224 0.875 bicubic
204 tf_mobilenetv3_large_100 -3 22.5707 22.571 -52.945 77.4293 77.429 39.7591 39.759 -52.841 60.2409 60.241 5.48 224 0.875 bilinear
205 hrnet_w18_small_v2 +1 22.3408 22.341 -52.785 77.6592 77.659 39.8475 39.847 -52.569 60.1525 60.153 15.6 15.60 224 0.875 bilinear
206 regnety_008 -14 22.1128 22.113 -54.201 77.8872 77.887 38.8964 38.896 -54.166 61.1036 61.104 6.26 224 0.875 bicubic
207 seresnext26tn_32x4d -52 22.0028 22.003 -55.987 77.9972 77.997 38.4916 38.492 -55.256 61.5084 61.508 16.81 224 0.875 bicubic
208 seresnext26t_32x4d -52 21.9871 21.987 -56.001 78.0129 78.013 38.5663 38.566 -55.140 61.4337 61.434 16.82 224 0.875 bicubic
209 regnety_006 -4 21.9733 21.973 -53.287 78.0267 78.027 38.9534 38.953 -53.575 61.0466 61.047 6.06 224 0.875 bicubic
210 regnetx_008 = 21.9517 21.952 -53.070 78.0483 78.048 38.9298 38.930 -53.414 61.0702 61.070 7.26 224 0.875 bicubic
211 resnet26d -23 21.9144 21.914 -54.766 78.0856 78.086 38.6174 38.617 -54.549 61.3826 61.383 16.01 224 0.875 bicubic
212 semnasnet_100 -9 21.8967 21.897 -53.559 78.1033 78.103 38.6036 38.604 -53.988 61.3964 61.396 3.89 224 0.875 bicubic
213 regnetx_006 +6 21.7434 21.743 -52.119 78.2566 78.257 38.9043 38.904 -52.776 61.0957 61.096 6.2 6.20 224 0.875 bicubic
214 gluon_resnet18_v1b +16 21.5449 21.545 -49.285 78.4551 78.455 38.8728 38.873 -50.883 61.1272 61.127 11.69 224 0.875 bicubic
215 fbnetc_100 -8 21.4919 21.492 -53.628 78.5081 78.508 38.1654 38.165 -54.221 61.8346 61.835 5.57 224 0.875 bilinear
216 mnasnet_100 -2 21.3504 21.350 -53.306 78.6496 78.650 37.7154 37.715 -54.411 62.2846 62.285 4.38 224 0.875 bicubic
217 resnet26 -13 21.2954 21.295 -53.997 78.7046 78.705 38.0161 38.016 -54.554 61.9839 61.984 16.0 16.00 224 0.875 bicubic
218 ssl_resnet18 +7 21.2777 21.278 -51.322 78.7223 78.722 39.1145 39.114 -52.302 60.8855 60.886 11.69 224 0.875 bilinear
219 mixnet_s -24 21.258 -54.730 78.742 38.1929 38.193 -54.601 61.8071 61.807 4.13 224 0.875 bicubic
220 seresnext26d_32x4d -55 21.2541 21.254 -56.350 78.7459 78.746 37.2851 37.285 -56.327 62.7149 62.715 16.81 224 0.875 bicubic
221 seresnext26_32x4d -41 21.093 -56.007 78.907 37.6388 37.639 -55.671 62.3612 62.361 16.79 224 0.875 bicubic
222 regnetx_004 +4 20.8866 20.887 -51.519 79.1134 79.113 37.5484 37.548 -53.282 62.4516 62.452 5.16 224 0.875 bicubic
223 spnasnet_100 -6 20.867 -53.213 79.133 37.8923 37.892 -53.940 62.1077 62.108 4.42 224 0.875 bilinear
224 seresnet18 +5 20.8395 20.840 -50.918 79.1605 79.160 37.6447 37.645 -52.689 62.3553 62.355 11.78 224 0.875 bicubic
225 mobilenetv2_100 -1 20.7609 20.761 -52.217 79.2391 79.239 37.7508 37.751 -53.265 62.2492 62.249 3.5 3.50 224 0.875 bicubic
226 tf_mixnet_s -28 20.4779 20.478 -55.170 79.5221 79.522 36.6268 36.627 -56.009 63.3732 63.373 4.13 224 0.875 bicubic
227 regnety_004 -9 20.417 -53.609 79.583 37.0296 37.030 -54.718 62.9704 62.970 4.34 224 0.875 bicubic
228 tf_mobilenetv3_large_075 -8 20.3718 20.372 -53.070 79.6282 79.628 36.7702 36.770 -54.582 63.2298 63.230 3.99 224 0.875 bilinear
229 hrnet_w18_small -2 20.3659 20.366 -51.976 79.6341 79.634 37.0945 37.094 -53.578 62.9055 62.906 13.19 224 0.875 bilinear
230 resnet18 +2 20.2283 20.228 -49.530 79.7717 79.772 37.2595 37.260 -51.818 62.7405 62.740 11.69 224 0.875 bilinear
231 tf_mobilenetv3_large_minimal_100 -3 20.1163 20.116 -52.128 79.8837 79.884 36.9038 36.904 -53.732 63.0962 63.096 3.92 224 0.875 bilinear
232 regnety_002 -1 17.4596 17.460 -52.822 82.5404 82.540 32.4432 32.443 -57.097 67.5568 67.557 3.16 224 0.875 bicubic
233 regnetx_002 = 16.9506 16.951 -51.803 83.0494 83.049 32.2349 32.235 -56.313 67.7651 67.765 2.68 224 0.875 bicubic
234 dla60x_c +1 16.3257 16.326 -51.582 83.6743 83.674 31.775 -56.659 68.225 1.34 224 0.875 bilinear
235 tf_mobilenetv3_small_100 -1 16.2334 16.233 -51.685 83.7666 83.767 31.2229 31.223 -56.439 68.7771 68.777 2.54 224 0.875 bilinear
236 tf_mobilenetv3_small_075 +1 14.9404 14.940 -50.778 85.0596 85.060 29.5722 29.572 -56.564 70.4278 70.428 2.04 224 0.875 bilinear
237 dla46_c +1 14.6613 14.661 -50.217 85.3387 85.339 29.3737 29.374 -56.912 70.6263 70.626 1.31 224 0.875 bilinear
238 dla46x_c -2 14.3803 14.380 -51.600 85.6197 85.620 29.1772 29.177 -57.803 70.8228 70.823 1.08 224 0.875 bilinear
239 tf_mobilenetv3_small_minimal_100 = 13.9677 13.968 -48.930 86.0323 86.032 27.9805 27.980 -56.250 72.0195 72.019 2.04 224 0.875 bilinear

@ -40,7 +40,7 @@ setup(
# Note that this is a string of words separated by whitespace, not a list.
keywords='pytorch pretrained models efficientnet mobilenetv3 mnasnet',
packages=find_packages(exclude=['convert', 'tests']),
packages=find_packages(exclude=['convert', 'tests', 'results']),
include_package_data=True,
install_requires=['torch >= 1.0', 'torchvision'],
python_requires='>=3.6',

@ -32,21 +32,21 @@ default_cfgs = {
'resnest26d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'),
'resnest50d': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50-528c19ca.pth'),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth'),
'resnest101e': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest101-22405ba7.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'resnest200e': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest200-75117900.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth',
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'),
'resnest269e': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest269-0cc87c48.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth',
input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'),
'resnest50d_4s2x40d': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_4s2x40d-41d14ed0.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth',
interpolation='bicubic'),
'resnest50d_1s4x24d': _cfg(
url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_1s4x24d-d4a4f76f.pth',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth',
interpolation='bicubic')
}

@ -103,7 +103,7 @@ class CosineLRScheduler(Scheduler):
def get_cycle_length(self, cycles=0):
if not cycles:
cycles = self.cycle_limit
assert cycles > 0
cycles = max(1, cycles)
if self.t_mul == 1.0:
return self.t_initial * cycles
else:

@ -28,7 +28,7 @@ def create_scheduler(args, optimizer):
decay_rate=args.decay_rate,
warmup_lr_init=args.warmup_lr,
warmup_t=args.warmup_epochs,
cycle_limit=getattr(args, 'lr_cycle_limit', 0),
cycle_limit=getattr(args, 'lr_cycle_limit', 1),
t_in_epochs=True,
noise_range_t=noise_range,
noise_pct=getattr(args, 'lr_noise_pct', 0.67),
@ -44,7 +44,7 @@ def create_scheduler(args, optimizer):
lr_min=args.min_lr,
warmup_lr_init=args.warmup_lr,
warmup_t=args.warmup_epochs,
cycle_limit=getattr(args, 'lr_cycle_limit', 0),
cycle_limit=getattr(args, 'lr_cycle_limit', 1),
t_in_epochs=True,
noise_range_t=noise_range,
noise_pct=getattr(args, 'lr_noise_pct', 0.67),

@ -107,7 +107,7 @@ class TanhLRScheduler(Scheduler):
def get_cycle_length(self, cycles=0):
if not cycles:
cycles = self.cycle_limit
assert cycles > 0
cycles = max(1, cycles)
if self.t_mul == 1.0:
return self.t_initial * cycles
else:

Loading…
Cancel
Save