|
|
@ -31,48 +31,48 @@ MAX_BWD_SIZE = 128
|
|
|
|
MAX_FWD_FEAT_SIZE = 448
|
|
|
|
MAX_FWD_FEAT_SIZE = 448
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
# @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS[:-NUM_NON_STD]))
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS[:-NUM_NON_STD]))
|
|
|
|
# @pytest.mark.parametrize('batch_size', [1])
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
# def test_model_forward(model_name, batch_size):
|
|
|
|
def test_model_forward(model_name, batch_size):
|
|
|
|
# """Run a single forward pass with each model"""
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
# model = create_model(model_name, pretrained=False)
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
# model.eval()
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
# input_size = model.default_cfg['input_size']
|
|
|
|
input_size = model.default_cfg['input_size']
|
|
|
|
# if any([x > MAX_FWD_SIZE for x in input_size]):
|
|
|
|
if any([x > MAX_FWD_SIZE for x in input_size]):
|
|
|
|
# # cap forward test at max res 448 * 448 to keep resource down
|
|
|
|
# cap forward test at max res 448 * 448 to keep resource down
|
|
|
|
# input_size = tuple([min(x, MAX_FWD_SIZE) for x in input_size])
|
|
|
|
input_size = tuple([min(x, MAX_FWD_SIZE) for x in input_size])
|
|
|
|
# inputs = torch.randn((batch_size, *input_size))
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
# outputs = model(inputs)
|
|
|
|
outputs = model(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
# assert outputs.shape[0] == batch_size
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
# assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
# @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
|
|
|
|
# @pytest.mark.parametrize('batch_size', [2])
|
|
|
|
@pytest.mark.parametrize('batch_size', [2])
|
|
|
|
# def test_model_backward(model_name, batch_size):
|
|
|
|
def test_model_backward(model_name, batch_size):
|
|
|
|
# """Run a single forward pass with each model"""
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
# model = create_model(model_name, pretrained=False, num_classes=42)
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42)
|
|
|
|
# num_params = sum([x.numel() for x in model.parameters()])
|
|
|
|
num_params = sum([x.numel() for x in model.parameters()])
|
|
|
|
# model.eval()
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
# input_size = model.default_cfg['input_size']
|
|
|
|
input_size = model.default_cfg['input_size']
|
|
|
|
# if any([x > MAX_BWD_SIZE for x in input_size]):
|
|
|
|
if any([x > MAX_BWD_SIZE for x in input_size]):
|
|
|
|
# # cap backward test at 128 * 128 to keep resource usage down
|
|
|
|
# cap backward test at 128 * 128 to keep resource usage down
|
|
|
|
# input_size = tuple([min(x, MAX_BWD_SIZE) for x in input_size])
|
|
|
|
input_size = tuple([min(x, MAX_BWD_SIZE) for x in input_size])
|
|
|
|
# inputs = torch.randn((batch_size, *input_size))
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
# outputs = model(inputs)
|
|
|
|
outputs = model(inputs)
|
|
|
|
# outputs.mean().backward()
|
|
|
|
outputs.mean().backward()
|
|
|
|
# for n, x in model.named_parameters():
|
|
|
|
for n, x in model.named_parameters():
|
|
|
|
# assert x.grad is not None, f'No gradient for {n}'
|
|
|
|
assert x.grad is not None, f'No gradient for {n}'
|
|
|
|
# num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
|
|
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
|
|
|
|
|
|
|
|
|
|
|
# assert outputs.shape[-1] == 42
|
|
|
|
assert outputs.shape[-1] == 42
|
|
|
|
# assert num_params == num_grad, 'Some parameters are missing gradients'
|
|
|
|
assert num_params == num_grad, 'Some parameters are missing gradients'
|
|
|
|
# assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @pytest.mark.timeout(120)
|
|
|
|
# @pytest.mark.timeout(120)
|
|
|
|