|
|
|
@ -33,6 +33,16 @@ from .registry import register_model
|
|
|
|
|
|
|
|
|
|
__all__ = ['DaViT']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MySequential(nn.Sequential):
|
|
|
|
|
|
|
|
|
|
def forward(self, inputs : Tensor, size : Tuple[int, int]):
|
|
|
|
|
for module in self:
|
|
|
|
|
output = module(inputs, size)
|
|
|
|
|
inputs : Tensor = output[0]
|
|
|
|
|
size : Tuple[int, int] = output[1]
|
|
|
|
|
return inputs
|
|
|
|
|
|
|
|
|
|
class ConvPosEnc(nn.Module):
|
|
|
|
|
def __init__(self, dim : int, k : int=3, act : bool=False, normtype : str='none'):
|
|
|
|
|
|
|
|
|
@ -103,7 +113,7 @@ class PatchEmbed(nn.Module):
|
|
|
|
|
self.norm = nn.LayerNorm(in_chans)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, size: Tuple[int, int]):
|
|
|
|
|
def forward(self, x : Tensor, size: Tuple[int, int]):
|
|
|
|
|
H, W = size
|
|
|
|
|
dim = len(x.shape)
|
|
|
|
|
if dim == 3:
|
|
|
|
@ -177,7 +187,7 @@ class ChannelBlock(nn.Module):
|
|
|
|
|
act_layer=act_layer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, size: Tuple[int, int]):
|
|
|
|
|
def forward(self, x : Tensor, size: Tuple[int, int]):
|
|
|
|
|
x = self.cpe[0](x, size)
|
|
|
|
|
cur = self.norm1(x)
|
|
|
|
|
cur = self.attn(cur)
|
|
|
|
@ -302,7 +312,7 @@ class SpatialBlock(nn.Module):
|
|
|
|
|
act_layer=act_layer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, size: Tuple[int, int]):
|
|
|
|
|
def forward(self, x : Tensor, size: Tuple[int, int]):
|
|
|
|
|
|
|
|
|
|
H, W = size
|
|
|
|
|
B, L, C = x.shape
|
|
|
|
@ -412,7 +422,7 @@ class DaViT(nn.Module):
|
|
|
|
|
layer_offset_id = len(list(itertools.chain(*self.architecture[:stage_id])))
|
|
|
|
|
|
|
|
|
|
stage = nn.ModuleList([
|
|
|
|
|
nn.ModuleList([
|
|
|
|
|
MySequential(*[
|
|
|
|
|
ChannelBlock(
|
|
|
|
|
dim=self.embed_dims[item],
|
|
|
|
|
num_heads=self.num_heads[item],
|
|
|
|
@ -443,7 +453,7 @@ class DaViT(nn.Module):
|
|
|
|
|
self.feature_info += [dict(
|
|
|
|
|
num_chs=self.embed_dims[stage_id],
|
|
|
|
|
reduction = 2,
|
|
|
|
|
module=f'stages.stage_{stage_id}.{depths[stage_id] - 1}.{len(attention_types) - 1}.mlp')]
|
|
|
|
|
module=f'stages.stage_{stage_id}.{depths[stage_id] - 1}')]#.{len(attention_types) - 1}.mlp')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.norms = norm_layer(self.num_features)
|
|
|
|
@ -482,8 +492,8 @@ class DaViT(nn.Module):
|
|
|
|
|
|
|
|
|
|
for patch_layer, stage in zip(self.patch_embeds, self.stages):
|
|
|
|
|
features[-1], sizes[-1] = patch_layer(features[-1], sizes[-1])
|
|
|
|
|
for _, block in enumerate(stage):
|
|
|
|
|
for _, layer in enumerate(block):
|
|
|
|
|
for block in stage:
|
|
|
|
|
for layer in block:
|
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
|
features[-1], sizes[-1] = checkpoint.checkpoint(layer, features[-1], sizes[-1])
|
|
|
|
|
else:
|
|
|
|
|