|
|
|
@ -175,12 +175,16 @@ class Attention(nn.Module):
|
|
|
|
|
class RandomMixing(nn.Module):
|
|
|
|
|
def __init__(self, num_tokens=196, **kwargs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
'''
|
|
|
|
|
self.random_matrix = nn.parameter.Parameter(
|
|
|
|
|
data=torch.softmax(torch.rand(num_tokens, num_tokens), dim=-1),
|
|
|
|
|
requires_grad=False)
|
|
|
|
|
'''
|
|
|
|
|
self.random_matrix = torch.softmax(torch.rand(num_tokens, num_tokens)
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
B, H, W, C = x.shape
|
|
|
|
|
x = x.reshape(B, H*W, C)
|
|
|
|
|
# FIXME change to work with arbitrary input sizes
|
|
|
|
|
x = torch.einsum('mn, bnc -> bmc', self.random_matrix, x)
|
|
|
|
|
x = x.reshape(B, H, W, C)
|
|
|
|
|
return x
|
|
|
|
|