Merge pull request #1415 from rwightman/more_vit
More ViT and ViT-CNN Hybrid architecturepull/804/merge
commit
4f72bae43b
@ -0,0 +1,551 @@
|
||||
""" EfficientFormer
|
||||
|
||||
@article{li2022efficientformer,
|
||||
title={EfficientFormer: Vision Transformers at MobileNet Speed},
|
||||
author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov,
|
||||
Sergey and Wang, Yanzhi and Ren, Jian},
|
||||
journal={arXiv preprint arXiv:2206.01191},
|
||||
year={2022}
|
||||
}
|
||||
|
||||
Based on Apache 2.0 licensed code at https://github.com/snap-research/EfficientFormer, Copyright (c) 2022 Snap Inc.
|
||||
|
||||
Modifications and timm support by / Copyright 2022, Ross Wightman
|
||||
"""
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .helpers import build_model_with_cfg
|
||||
from .layers import DropPath, trunc_normal_, to_2tuple, Mlp
|
||||
from .registry import register_model
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
|
||||
'crop_pct': .95, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'),
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = dict(
|
||||
efficientformer_l1=_cfg(
|
||||
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/efficientformer_l1_1000d_224-5b08fab0.pth",
|
||||
),
|
||||
efficientformer_l3=_cfg(
|
||||
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/efficientformer_l3_300d_224-6816624f.pth",
|
||||
),
|
||||
efficientformer_l7=_cfg(
|
||||
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/efficientformer_l7_300d_224-e957ab75.pth",
|
||||
),
|
||||
)
|
||||
|
||||
EfficientFormer_width = {
|
||||
'l1': (48, 96, 224, 448),
|
||||
'l3': (64, 128, 320, 512),
|
||||
'l7': (96, 192, 384, 768),
|
||||
}
|
||||
|
||||
EfficientFormer_depth = {
|
||||
'l1': (3, 2, 6, 4),
|
||||
'l3': (4, 4, 12, 6),
|
||||
'l7': (6, 6, 18, 8),
|
||||
}
|
||||
|
||||
|
||||
class Attention(torch.nn.Module):
|
||||
attention_bias_cache: Dict[str, torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=384,
|
||||
key_dim=32,
|
||||
num_heads=8,
|
||||
attn_ratio=4,
|
||||
resolution=7
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.scale = key_dim ** -0.5
|
||||
self.key_dim = key_dim
|
||||
self.key_attn_dim = key_dim * num_heads
|
||||
self.val_dim = int(attn_ratio * key_dim)
|
||||
self.val_attn_dim = self.val_dim * num_heads
|
||||
self.attn_ratio = attn_ratio
|
||||
|
||||
self.qkv = nn.Linear(dim, self.key_attn_dim * 2 + self.val_attn_dim)
|
||||
self.proj = nn.Linear(self.val_attn_dim, dim)
|
||||
|
||||
resolution = to_2tuple(resolution)
|
||||
pos = torch.stack(torch.meshgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1)
|
||||
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs()
|
||||
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1]
|
||||
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1]))
|
||||
self.register_buffer('attention_bias_idxs', torch.LongTensor(rel_pos))
|
||||
self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat)
|
||||
|
||||
@torch.no_grad()
|
||||
def train(self, mode=True):
|
||||
super().train(mode)
|
||||
if mode and self.attention_bias_cache:
|
||||
self.attention_bias_cache = {} # clear ab cache
|
||||
|
||||
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
||||
if self.training:
|
||||
return self.attention_biases[:, self.attention_bias_idxs]
|
||||
else:
|
||||
device_key = str(device)
|
||||
if device_key not in self.attention_bias_cache:
|
||||
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
||||
return self.attention_bias_cache[device_key]
|
||||
|
||||
def forward(self, x): # x (B,N,C)
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x)
|
||||
qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
q, k, v = qkv.split([self.key_dim, self.key_dim, self.val_dim], dim=3)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn + self.get_attention_biases(x.device)
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class Stem4(nn.Sequential):
|
||||
def __init__(self, in_chs, out_chs, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
||||
super().__init__()
|
||||
self.stride = 4
|
||||
|
||||
self.add_module('conv1', nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1))
|
||||
self.add_module('norm1', norm_layer(out_chs // 2))
|
||||
self.add_module('act1', act_layer())
|
||||
self.add_module('conv2', nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1))
|
||||
self.add_module('norm2', norm_layer(out_chs))
|
||||
self.add_module('act2', act_layer())
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
Downsampling via strided conv w/ norm
|
||||
Input: tensor in shape [B, C, H, W]
|
||||
Output: tensor in shape [B, C, H/stride, W/stride]
|
||||
"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=None, norm_layer=nn.BatchNorm2d):
|
||||
super().__init__()
|
||||
if padding is None:
|
||||
padding = kernel_size // 2
|
||||
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding)
|
||||
self.norm = norm_layer(out_chs)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class Flat(nn.Module):
|
||||
|
||||
def __init__(self, ):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class Pooling(nn.Module):
|
||||
"""
|
||||
Implementation of pooling for PoolFormer
|
||||
--pool_size: pooling size
|
||||
"""
|
||||
|
||||
def __init__(self, pool_size=3):
|
||||
super().__init__()
|
||||
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.pool(x) - x
|
||||
|
||||
|
||||
class ConvMlpWithNorm(nn.Module):
|
||||
"""
|
||||
Implementation of MLP with 1*1 convolutions.
|
||||
Input: tensor with shape [B, C, H, W]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.BatchNorm2d,
|
||||
drop=0.
|
||||
):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
|
||||
self.norm1 = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
|
||||
self.norm2 = norm_layer(out_features) if norm_layer is not None else nn.Identity()
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.norm1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.norm2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
def __init__(self, dim, init_values=1e-5, inplace=False):
|
||||
super().__init__()
|
||||
self.inplace = inplace
|
||||
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
||||
|
||||
|
||||
class MetaBlock1d(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
drop=0.,
|
||||
drop_path=0.,
|
||||
layer_scale_init_value=1e-5
|
||||
):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.token_mixer = Attention(dim)
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
|
||||
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.ls1 = LayerScale(dim, layer_scale_init_value)
|
||||
self.ls2 = LayerScale(dim, layer_scale_init_value)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x))))
|
||||
x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x))))
|
||||
return x
|
||||
|
||||
|
||||
class LayerScale2d(nn.Module):
|
||||
def __init__(self, dim, init_values=1e-5, inplace=False):
|
||||
super().__init__()
|
||||
self.inplace = inplace
|
||||
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
gamma = self.gamma.view(1, -1, 1, 1)
|
||||
return x.mul_(gamma) if self.inplace else x * gamma
|
||||
|
||||
|
||||
class MetaBlock2d(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
pool_size=3,
|
||||
mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.BatchNorm2d,
|
||||
drop=0.,
|
||||
drop_path=0.,
|
||||
layer_scale_init_value=1e-5
|
||||
):
|
||||
super().__init__()
|
||||
self.token_mixer = Pooling(pool_size=pool_size)
|
||||
self.mlp = ConvMlpWithNorm(
|
||||
dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer, drop=drop)
|
||||
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.ls1 = LayerScale2d(dim, layer_scale_init_value)
|
||||
self.ls2 = LayerScale2d(dim, layer_scale_init_value)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.ls1(self.token_mixer(x)))
|
||||
x = x + self.drop_path(self.ls2(self.mlp(x)))
|
||||
return x
|
||||
|
||||
|
||||
class EfficientFormerStage(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out,
|
||||
depth,
|
||||
downsample=True,
|
||||
num_vit=1,
|
||||
pool_size=3,
|
||||
mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.BatchNorm2d,
|
||||
norm_layer_cl=nn.LayerNorm,
|
||||
drop=.0,
|
||||
drop_path=0.,
|
||||
layer_scale_init_value=1e-5,
|
||||
):
|
||||
super().__init__()
|
||||
self.grad_checkpointing = False
|
||||
|
||||
if downsample:
|
||||
self.downsample = Downsample(in_chs=dim, out_chs=dim_out, norm_layer=norm_layer)
|
||||
dim = dim_out
|
||||
else:
|
||||
assert dim == dim_out
|
||||
self.downsample = nn.Identity()
|
||||
|
||||
blocks = []
|
||||
if num_vit and num_vit >= depth:
|
||||
blocks.append(Flat())
|
||||
|
||||
for block_idx in range(depth):
|
||||
remain_idx = depth - block_idx - 1
|
||||
if num_vit and num_vit > remain_idx:
|
||||
blocks.append(
|
||||
MetaBlock1d(
|
||||
dim,
|
||||
mlp_ratio=mlp_ratio,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer_cl,
|
||||
drop=drop,
|
||||
drop_path=drop_path[block_idx],
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
))
|
||||
else:
|
||||
blocks.append(
|
||||
MetaBlock2d(
|
||||
dim,
|
||||
pool_size=pool_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
drop=drop,
|
||||
drop_path=drop_path[block_idx],
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
))
|
||||
if num_vit and num_vit == remain_idx:
|
||||
blocks.append(Flat())
|
||||
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.downsample(x)
|
||||
x = self.blocks(x)
|
||||
return x
|
||||
|
||||
|
||||
class EfficientFormer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
depths,
|
||||
embed_dims=None,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
global_pool='avg',
|
||||
downsamples=None,
|
||||
num_vit=0,
|
||||
mlp_ratios=4,
|
||||
pool_size=3,
|
||||
layer_scale_init_value=1e-5,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.BatchNorm2d,
|
||||
norm_layer_cl=nn.LayerNorm,
|
||||
drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.global_pool = global_pool
|
||||
|
||||
self.stem = Stem4(in_chans, embed_dims[0], norm_layer=norm_layer)
|
||||
prev_dim = embed_dims[0]
|
||||
|
||||
# stochastic depth decay rule
|
||||
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
downsamples = downsamples or (False,) + (True,) * (len(depths) - 1)
|
||||
stages = []
|
||||
for i in range(len(depths)):
|
||||
stage = EfficientFormerStage(
|
||||
prev_dim,
|
||||
embed_dims[i],
|
||||
depths[i],
|
||||
downsample=downsamples[i],
|
||||
num_vit=num_vit if i == 3 else 0,
|
||||
pool_size=pool_size,
|
||||
mlp_ratio=mlp_ratios,
|
||||
act_layer=act_layer,
|
||||
norm_layer_cl=norm_layer_cl,
|
||||
norm_layer=norm_layer,
|
||||
drop=drop_rate,
|
||||
drop_path=dpr[i],
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
)
|
||||
prev_dim = embed_dims[i]
|
||||
stages.append(stage)
|
||||
|
||||
self.stages = nn.Sequential(*stages)
|
||||
|
||||
# Classifier head
|
||||
self.num_features = embed_dims[-1]
|
||||
self.norm = norm_layer_cl(self.num_features)
|
||||
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
# assuming model is always distilled (valid for current checkpoints, will split def if that changes)
|
||||
self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
||||
self.distilled_training = False # must set this True to train w/ distillation token
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
# init for classification
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {k for k, _ in self.named_parameters() if 'attention_biases' in k}
|
||||
|
||||
@torch.jit.ignore
|
||||
def group_matcher(self, coarse=False):
|
||||
matcher = dict(
|
||||
stem=r'^stem', # stem and embed
|
||||
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
|
||||
)
|
||||
return matcher
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
for s in self.stages:
|
||||
s.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def get_classifier(self):
|
||||
return self.head, self.head_dist
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=None):
|
||||
self.num_classes = num_classes
|
||||
if global_pool is not None:
|
||||
self.global_pool = global_pool
|
||||
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_distilled_training(self, enable=True):
|
||||
self.distilled_training = enable
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
x = self.stages(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
if self.global_pool == 'avg':
|
||||
x = x.mean(dim=1)
|
||||
if pre_logits:
|
||||
return x
|
||||
x, x_dist = self.head(x), self.head_dist(x)
|
||||
if self.distilled_training and self.training and not torch.jit.is_scripting():
|
||||
# only return separate classification predictions when training in distilled mode
|
||||
return x, x_dist
|
||||
else:
|
||||
# during standard train/finetune, inference average the classifier predictions
|
||||
return (x + x_dist) / 2
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _checkpoint_filter_fn(state_dict, model):
|
||||
""" Remap original checkpoints -> timm """
|
||||
if 'stem.0.weight' in state_dict:
|
||||
return state_dict # non-original checkpoint, no remapping needed
|
||||
|
||||
out_dict = {}
|
||||
import re
|
||||
stage_idx = 0
|
||||
for k, v in state_dict.items():
|
||||
if k.startswith('patch_embed'):
|
||||
k = k.replace('patch_embed.0', 'stem.conv1')
|
||||
k = k.replace('patch_embed.1', 'stem.norm1')
|
||||
k = k.replace('patch_embed.3', 'stem.conv2')
|
||||
k = k.replace('patch_embed.4', 'stem.norm2')
|
||||
|
||||
if re.match(r'network\.(\d+)\.proj\.weight', k):
|
||||
stage_idx += 1
|
||||
k = re.sub(r'network.(\d+).(\d+)', f'stages.{stage_idx}.blocks.\\2', k)
|
||||
k = re.sub(r'network.(\d+).proj', f'stages.{stage_idx}.downsample.conv', k)
|
||||
k = re.sub(r'network.(\d+).norm', f'stages.{stage_idx}.downsample.norm', k)
|
||||
|
||||
k = re.sub(r'layer_scale_([0-9])', r'ls\1.gamma', k)
|
||||
k = k.replace('dist_head', 'head_dist')
|
||||
out_dict[k] = v
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_efficientformer(variant, pretrained=False, **kwargs):
|
||||
model = build_model_with_cfg(
|
||||
EfficientFormer, variant, pretrained,
|
||||
pretrained_filter_fn=_checkpoint_filter_fn,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def efficientformer_l1(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=EfficientFormer_depth['l1'],
|
||||
embed_dims=EfficientFormer_width['l1'],
|
||||
num_vit=1,
|
||||
**kwargs)
|
||||
return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def efficientformer_l3(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=EfficientFormer_depth['l3'],
|
||||
embed_dims=EfficientFormer_width['l3'],
|
||||
num_vit=4,
|
||||
**kwargs)
|
||||
return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def efficientformer_l7(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=EfficientFormer_depth['l7'],
|
||||
embed_dims=EfficientFormer_width['l7'],
|
||||
num_vit=8,
|
||||
**kwargs)
|
||||
return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **model_kwargs)
|
||||
|
@ -0,0 +1,588 @@
|
||||
""" Global Context ViT
|
||||
|
||||
From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py
|
||||
|
||||
Global Context Vision Transformers -https://arxiv.org/abs/2206.09959
|
||||
|
||||
@article{hatamizadeh2022global,
|
||||
title={Global Context Vision Transformers},
|
||||
author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo},
|
||||
journal={arXiv preprint arXiv:2206.09959},
|
||||
year={2022}
|
||||
}
|
||||
|
||||
Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit.
|
||||
The license for this code release is Apache 2.0 with no commercial restrictions.
|
||||
|
||||
However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license
|
||||
(https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones...
|
||||
|
||||
Hacked together by / Copyright 2022, Ross Wightman
|
||||
"""
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .fx_features import register_notrace_function
|
||||
from .helpers import build_model_with_cfg, named_apply
|
||||
from .layers import trunc_normal_tf_, DropPath, to_2tuple, Mlp, get_attn, get_act_layer, get_norm_layer, \
|
||||
ClassifierHead, LayerNorm2d, _assert
|
||||
from .registry import register_model
|
||||
from .vision_transformer_relpos import RelPosMlp, RelPosBias # FIXME move to common location
|
||||
|
||||
__all__ = ['GlobalContextVit']
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'stem.conv1', 'classifier': 'head.fc',
|
||||
'fixed_input_size': True,
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
'gcvit_xxtiny': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'),
|
||||
'gcvit_xtiny': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'),
|
||||
'gcvit_tiny': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'),
|
||||
'gcvit_small': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'),
|
||||
'gcvit_base': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'),
|
||||
}
|
||||
|
||||
|
||||
class MbConvBlock(nn.Module):
|
||||
""" A depthwise separable / fused mbconv style residual block with SE, `no norm.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
in_chs,
|
||||
out_chs=None,
|
||||
expand_ratio=1.0,
|
||||
attn_layer='se',
|
||||
bias=False,
|
||||
act_layer=nn.GELU,
|
||||
):
|
||||
super().__init__()
|
||||
attn_kwargs = dict(act_layer=act_layer)
|
||||
if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca':
|
||||
attn_kwargs['rd_ratio'] = 0.25
|
||||
attn_kwargs['bias'] = False
|
||||
attn_layer = get_attn(attn_layer)
|
||||
out_chs = out_chs or in_chs
|
||||
mid_chs = int(expand_ratio * in_chs)
|
||||
|
||||
self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias)
|
||||
self.act = act_layer()
|
||||
self.se = attn_layer(mid_chs, **attn_kwargs)
|
||||
self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = x
|
||||
x = self.conv_dw(x)
|
||||
x = self.act(x)
|
||||
x = self.se(x)
|
||||
x = self.conv_pw(x)
|
||||
x = x + shortcut
|
||||
return x
|
||||
|
||||
|
||||
class Downsample2d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out=None,
|
||||
reduction='conv',
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=LayerNorm2d, # NOTE in NCHW
|
||||
):
|
||||
super().__init__()
|
||||
dim_out = dim_out or dim
|
||||
|
||||
self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity()
|
||||
self.conv_block = MbConvBlock(dim, act_layer=act_layer)
|
||||
assert reduction in ('conv', 'max', 'avg')
|
||||
if reduction == 'conv':
|
||||
self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False)
|
||||
elif reduction == 'max':
|
||||
assert dim == dim_out
|
||||
self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
else:
|
||||
assert dim == dim_out
|
||||
self.reduction = nn.AvgPool2d(kernel_size=2)
|
||||
self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm1(x)
|
||||
x = self.conv_block(x)
|
||||
x = self.reduction(x)
|
||||
x = self.norm2(x)
|
||||
return x
|
||||
|
||||
|
||||
class FeatureBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
levels=0,
|
||||
reduction='max',
|
||||
act_layer=nn.GELU,
|
||||
):
|
||||
super().__init__()
|
||||
reductions = levels
|
||||
levels = max(1, levels)
|
||||
if reduction == 'avg':
|
||||
pool_fn = partial(nn.AvgPool2d, kernel_size=2)
|
||||
else:
|
||||
pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1)
|
||||
self.blocks = nn.Sequential()
|
||||
for i in range(levels):
|
||||
self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer))
|
||||
if reductions:
|
||||
self.blocks.add_module(f'pool{i+1}', pool_fn())
|
||||
reductions -= 1
|
||||
|
||||
def forward(self, x):
|
||||
return self.blocks(x)
|
||||
|
||||
|
||||
class Stem(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chs: int = 3,
|
||||
out_chs: int = 96,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW
|
||||
):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1)
|
||||
self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.down(x)
|
||||
return x
|
||||
|
||||
|
||||
class WindowAttentionGlobal(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int,
|
||||
window_size: Tuple[int, int],
|
||||
use_global: bool = True,
|
||||
qkv_bias: bool = True,
|
||||
attn_drop: float = 0.,
|
||||
proj_drop: float = 0.,
|
||||
):
|
||||
super().__init__()
|
||||
window_size = to_2tuple(window_size)
|
||||
self.window_size = window_size
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.use_global = use_global
|
||||
|
||||
self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads)
|
||||
if self.use_global:
|
||||
self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
||||
else:
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, q_global: Optional[torch.Tensor] = None):
|
||||
B, N, C = x.shape
|
||||
if self.use_global and q_global is not None:
|
||||
_assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal')
|
||||
|
||||
kv = self.qkv(x)
|
||||
kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
k, v = kv.unbind(0)
|
||||
|
||||
q = q_global.repeat(B // q_global.shape[0], 1, 1, 1)
|
||||
q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
||||
else:
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(0)
|
||||
q = q * self.scale
|
||||
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
attn = self.rel_pos(attn)
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
def window_partition(x, window_size: Tuple[int, int]):
|
||||
B, H, W, C = x.shape
|
||||
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
||||
return windows
|
||||
|
||||
|
||||
@register_notrace_function # reason: int argument is a Proxy
|
||||
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
|
||||
H, W = img_size
|
||||
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
|
||||
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||
return x
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
def __init__(self, dim, init_values=1e-5, inplace=False):
|
||||
super().__init__()
|
||||
self.inplace = inplace
|
||||
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
||||
|
||||
|
||||
class GlobalContextVitBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
feat_size: Tuple[int, int],
|
||||
num_heads: int,
|
||||
window_size: int = 7,
|
||||
mlp_ratio: float = 4.,
|
||||
use_global: bool = True,
|
||||
qkv_bias: bool = True,
|
||||
layer_scale: Optional[float] = None,
|
||||
proj_drop: float = 0.,
|
||||
attn_drop: float = 0.,
|
||||
drop_path: float = 0.,
|
||||
attn_layer: Callable = WindowAttentionGlobal,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = nn.LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
feat_size = to_2tuple(feat_size)
|
||||
window_size = to_2tuple(window_size)
|
||||
self.window_size = window_size
|
||||
self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1]))
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = attn_layer(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
window_size=window_size,
|
||||
use_global=use_global,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=proj_drop,
|
||||
)
|
||||
self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity()
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop)
|
||||
self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity()
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def _window_attn(self, x, q_global: Optional[torch.Tensor] = None):
|
||||
B, H, W, C = x.shape
|
||||
x_win = window_partition(x, self.window_size)
|
||||
x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C)
|
||||
attn_win = self.attn(x_win, q_global)
|
||||
x = window_reverse(attn_win, self.window_size, (H, W))
|
||||
return x
|
||||
|
||||
def forward(self, x, q_global: Optional[torch.Tensor] = None):
|
||||
x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global)))
|
||||
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
||||
return x
|
||||
|
||||
|
||||
class GlobalContextVitStage(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth: int,
|
||||
num_heads: int,
|
||||
feat_size: Tuple[int, int],
|
||||
window_size: int,
|
||||
downsample: bool = True,
|
||||
global_norm: bool = False,
|
||||
stage_norm: bool = False,
|
||||
mlp_ratio: float = 4.,
|
||||
qkv_bias: bool = True,
|
||||
layer_scale: Optional[float] = None,
|
||||
proj_drop: float = 0.,
|
||||
attn_drop: float = 0.,
|
||||
drop_path: Union[List[float], float] = 0.0,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = nn.LayerNorm,
|
||||
norm_layer_cl: Callable = LayerNorm2d,
|
||||
):
|
||||
super().__init__()
|
||||
if downsample:
|
||||
self.downsample = Downsample2d(
|
||||
dim=dim,
|
||||
dim_out=dim * 2,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
dim = dim * 2
|
||||
feat_size = (feat_size[0] // 2, feat_size[1] // 2)
|
||||
else:
|
||||
self.downsample = nn.Identity()
|
||||
self.feat_size = feat_size
|
||||
|
||||
feat_levels = int(math.log2(min(feat_size) / window_size))
|
||||
self.global_block = FeatureBlock(dim, feat_levels)
|
||||
self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity()
|
||||
|
||||
self.blocks = nn.ModuleList([
|
||||
GlobalContextVitBlock(
|
||||
dim=dim,
|
||||
num_heads=num_heads,
|
||||
feat_size=feat_size,
|
||||
window_size=window_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
use_global=(i % 2 != 0),
|
||||
layer_scale=layer_scale,
|
||||
proj_drop=proj_drop,
|
||||
attn_drop=attn_drop,
|
||||
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer_cl,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity()
|
||||
self.dim = dim
|
||||
self.feat_size = feat_size
|
||||
self.grad_checkpointing = False
|
||||
|
||||
def forward(self, x):
|
||||
# input NCHW, downsample & global block are 2d conv + pooling
|
||||
x = self.downsample(x)
|
||||
global_query = self.global_block(x)
|
||||
|
||||
# reshape NCHW --> NHWC for transformer blocks
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
global_query = self.global_norm(global_query.permute(0, 2, 3, 1))
|
||||
for blk in self.blocks:
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint.checkpoint(blk, x)
|
||||
else:
|
||||
x = blk(x, global_query)
|
||||
x = self.norm(x)
|
||||
x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW
|
||||
return x
|
||||
|
||||
|
||||
class GlobalContextVit(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chans: int = 3,
|
||||
num_classes: int = 1000,
|
||||
global_pool: str = 'avg',
|
||||
img_size: Tuple[int, int] = 224,
|
||||
window_size: Tuple[int, ...] = (7, 7, 14, 7),
|
||||
embed_dim: int = 64,
|
||||
depths: Tuple[int, ...] = (3, 4, 19, 5),
|
||||
num_heads: Tuple[int, ...] = (2, 4, 8, 16),
|
||||
mlp_ratio: float = 3.0,
|
||||
qkv_bias: bool = True,
|
||||
layer_scale: Optional[float] = None,
|
||||
drop_rate: float = 0.,
|
||||
proj_drop_rate: float = 0.,
|
||||
attn_drop_rate: float = 0.,
|
||||
drop_path_rate: float = 0.,
|
||||
weight_init='vit',
|
||||
act_layer: str = 'gelu',
|
||||
norm_layer: str = 'layernorm2d',
|
||||
norm_layer_cl: str = 'layernorm',
|
||||
norm_eps: float = 1e-5,
|
||||
):
|
||||
super().__init__()
|
||||
act_layer = get_act_layer(act_layer)
|
||||
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps)
|
||||
norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps)
|
||||
|
||||
img_size = to_2tuple(img_size)
|
||||
feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4
|
||||
self.global_pool = global_pool
|
||||
self.num_classes = num_classes
|
||||
self.drop_rate = drop_rate
|
||||
num_stages = len(depths)
|
||||
self.num_features = int(embed_dim * 2 ** (num_stages - 1))
|
||||
|
||||
self.stem = Stem(
|
||||
in_chs=in_chans,
|
||||
out_chs=embed_dim,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer
|
||||
)
|
||||
|
||||
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
stages = []
|
||||
for i in range(num_stages):
|
||||
last_stage = i == num_stages - 1
|
||||
stage_scale = 2 ** max(i - 1, 0)
|
||||
stages.append(GlobalContextVitStage(
|
||||
dim=embed_dim * stage_scale,
|
||||
depth=depths[i],
|
||||
num_heads=num_heads[i],
|
||||
feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale),
|
||||
window_size=window_size[i],
|
||||
downsample=i != 0,
|
||||
stage_norm=last_stage,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
layer_scale=layer_scale,
|
||||
proj_drop=proj_drop_rate,
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[i],
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
norm_layer_cl=norm_layer_cl,
|
||||
))
|
||||
self.stages = nn.Sequential(*stages)
|
||||
|
||||
# Classifier head
|
||||
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
||||
|
||||
if weight_init:
|
||||
named_apply(partial(self._init_weights, scheme=weight_init), self)
|
||||
|
||||
def _init_weights(self, module, name, scheme='vit'):
|
||||
# note Conv2d left as default init
|
||||
if scheme == 'vit':
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight)
|
||||
if module.bias is not None:
|
||||
if 'mlp' in name:
|
||||
nn.init.normal_(module.bias, std=1e-6)
|
||||
else:
|
||||
nn.init.zeros_(module.bias)
|
||||
else:
|
||||
if isinstance(module, nn.Linear):
|
||||
trunc_normal_tf_(module.weight, std=.02)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {
|
||||
k for k, _ in self.named_parameters()
|
||||
if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])}
|
||||
|
||||
|
||||
@torch.jit.ignore
|
||||
def group_matcher(self, coarse=False):
|
||||
matcher = dict(
|
||||
stem=r'^stem', # stem and embed
|
||||
blocks=r'^stages\.(\d+)'
|
||||
)
|
||||
return matcher
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
for s in self.stages:
|
||||
s.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def get_classifier(self):
|
||||
return self.head.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=None):
|
||||
self.num_classes = num_classes
|
||||
if global_pool is None:
|
||||
global_pool = self.head.global_pool.pool_type
|
||||
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
||||
|
||||
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.stem(x)
|
||||
x = self.stages(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
return self.head(x, pre_logits=pre_logits)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _create_gcvit(variant, pretrained=False, **kwargs):
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
||||
model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def gcvit_xxtiny(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(2, 2, 6, 2),
|
||||
num_heads=(2, 4, 8, 16),
|
||||
**kwargs)
|
||||
return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gcvit_xtiny(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 6, 5),
|
||||
num_heads=(2, 4, 8, 16),
|
||||
**kwargs)
|
||||
return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gcvit_tiny(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 19, 5),
|
||||
num_heads=(2, 4, 8, 16),
|
||||
**kwargs)
|
||||
return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gcvit_small(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 19, 5),
|
||||
num_heads=(3, 6, 12, 24),
|
||||
window_size=(7, 7, 14, 7),
|
||||
embed_dim=96,
|
||||
mlp_ratio=2,
|
||||
layer_scale=1e-5,
|
||||
**kwargs)
|
||||
return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def gcvit_base(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 19, 5),
|
||||
num_heads=(4, 8, 16, 32),
|
||||
window_size=(7, 7, 14, 7),
|
||||
embed_dim=128,
|
||||
mlp_ratio=2,
|
||||
layer_scale=1e-5,
|
||||
**kwargs)
|
||||
return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs)
|
@ -0,0 +1,56 @@
|
||||
""" Norm Layer Factory
|
||||
|
||||
Create norm modules by string (to mirror create_act and creat_norm-act fns)
|
||||
|
||||
Copyright 2022 Ross Wightman
|
||||
"""
|
||||
import types
|
||||
import functools
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d
|
||||
|
||||
_NORM_MAP = dict(
|
||||
batchnorm=nn.BatchNorm2d,
|
||||
batchnorm2d=nn.BatchNorm2d,
|
||||
batchnorm1d=nn.BatchNorm1d,
|
||||
groupnorm=GroupNorm,
|
||||
groupnorm1=GroupNorm1,
|
||||
layernorm=LayerNorm,
|
||||
layernorm2d=LayerNorm2d,
|
||||
)
|
||||
_NORM_TYPES = {m for n, m in _NORM_MAP.items()}
|
||||
|
||||
|
||||
def create_norm_layer(layer_name, num_features, act_layer=None, apply_act=True, **kwargs):
|
||||
layer = get_norm_layer(layer_name, act_layer=act_layer)
|
||||
layer_instance = layer(num_features, apply_act=apply_act, **kwargs)
|
||||
return layer_instance
|
||||
|
||||
|
||||
def get_norm_layer(norm_layer):
|
||||
assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial))
|
||||
norm_kwargs = {}
|
||||
|
||||
# unbind partial fn, so args can be rebound later
|
||||
if isinstance(norm_layer, functools.partial):
|
||||
norm_kwargs.update(norm_layer.keywords)
|
||||
norm_layer = norm_layer.func
|
||||
|
||||
if isinstance(norm_layer, str):
|
||||
layer_name = norm_layer.replace('_', '')
|
||||
norm_layer = _NORM_MAP.get(layer_name, None)
|
||||
elif norm_layer in _NORM_TYPES:
|
||||
norm_layer = norm_layer
|
||||
elif isinstance(norm_layer, types.FunctionType):
|
||||
# if function type, assume it is a lambda/fn that creates a norm layer
|
||||
norm_layer = norm_layer
|
||||
else:
|
||||
type_name = norm_layer.__name__.lower().replace('_', '')
|
||||
norm_layer = _NORM_MAP.get(type_name, None)
|
||||
assert norm_layer is not None, f"No equivalent norm layer for {type_name}"
|
||||
|
||||
if norm_kwargs:
|
||||
norm_layer = functools.partial(norm_layer, **norm_kwargs) # bind/rebind args
|
||||
return norm_layer
|
@ -0,0 +1,78 @@
|
||||
""" 'Fast' Normalization Functions
|
||||
|
||||
For GroupNorm and LayerNorm these functions bypass typical AMP upcast to float32.
|
||||
|
||||
Additionally, for LayerNorm, the APEX fused LN is used if available (which also does not upcast)
|
||||
|
||||
Hacked together by / Copyright 2022 Ross Wightman
|
||||
"""
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
try:
|
||||
from apex.normalization.fused_layer_norm import fused_layer_norm_affine
|
||||
has_apex = True
|
||||
except ImportError:
|
||||
has_apex = False
|
||||
|
||||
|
||||
# fast (ie lower precision LN) can be disabled with this flag if issues crop up
|
||||
_USE_FAST_NORM = False # defaulting to False for now
|
||||
|
||||
|
||||
def is_fast_norm():
|
||||
return _USE_FAST_NORM
|
||||
|
||||
|
||||
def set_fast_norm(enable=True):
|
||||
global _USE_FAST_NORM
|
||||
_USE_FAST_NORM = enable
|
||||
|
||||
|
||||
def fast_group_norm(
|
||||
x: torch.Tensor,
|
||||
num_groups: int,
|
||||
weight: Optional[torch.Tensor] = None,
|
||||
bias: Optional[torch.Tensor] = None,
|
||||
eps: float = 1e-5
|
||||
) -> torch.Tensor:
|
||||
if torch.jit.is_scripting():
|
||||
# currently cannot use is_autocast_enabled within torchscript
|
||||
return F.group_norm(x, num_groups, weight, bias, eps)
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
# normally native AMP casts GN inputs to float32
|
||||
# here we use the low precision autocast dtype
|
||||
# FIXME what to do re CPU autocast?
|
||||
dt = torch.get_autocast_gpu_dtype()
|
||||
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
return F.group_norm(x, num_groups, weight, bias, eps)
|
||||
|
||||
|
||||
def fast_layer_norm(
|
||||
x: torch.Tensor,
|
||||
normalized_shape: List[int],
|
||||
weight: Optional[torch.Tensor] = None,
|
||||
bias: Optional[torch.Tensor] = None,
|
||||
eps: float = 1e-5
|
||||
) -> torch.Tensor:
|
||||
if torch.jit.is_scripting():
|
||||
# currently cannot use is_autocast_enabled within torchscript
|
||||
return F.layer_norm(x, normalized_shape, weight, bias, eps)
|
||||
|
||||
if has_apex:
|
||||
return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps)
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
# normally native AMP casts LN inputs to float32
|
||||
# apex LN does not, this is behaving like Apex
|
||||
dt = torch.get_autocast_gpu_dtype()
|
||||
# FIXME what to do re CPU autocast?
|
||||
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
return F.layer_norm(x, normalized_shape, weight, bias, eps)
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,998 @@
|
||||
""" Multi-Scale Vision Transformer v2
|
||||
|
||||
@inproceedings{li2021improved,
|
||||
title={MViTv2: Improved multiscale vision transformers for classification and detection},
|
||||
author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph},
|
||||
booktitle={CVPR},
|
||||
year={2022}
|
||||
}
|
||||
|
||||
Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit
|
||||
Original copyright below.
|
||||
|
||||
Modifications and timm support by / Copyright 2022, Ross Wightman
|
||||
"""
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved.
|
||||
import operator
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass
|
||||
from functools import partial, reduce
|
||||
from typing import Union, List, Tuple, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
from torch import nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .fx_features import register_notrace_function
|
||||
from .helpers import build_model_with_cfg
|
||||
from .layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple
|
||||
from .registry import register_model
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||
'crop_pct': .9, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
|
||||
'fixed_input_size': True,
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = dict(
|
||||
mvitv2_tiny=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth'),
|
||||
mvitv2_small=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth'),
|
||||
mvitv2_base=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth'),
|
||||
mvitv2_large=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth'),
|
||||
|
||||
mvitv2_base_in21k=_cfg(
|
||||
url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth',
|
||||
num_classes=19168),
|
||||
mvitv2_large_in21k=_cfg(
|
||||
url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth',
|
||||
num_classes=19168),
|
||||
mvitv2_huge_in21k=_cfg(
|
||||
url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth',
|
||||
num_classes=19168),
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MultiScaleVitCfg:
|
||||
depths: Tuple[int, ...] = (2, 3, 16, 3)
|
||||
embed_dim: Union[int, Tuple[int, ...]] = 96
|
||||
num_heads: Union[int, Tuple[int, ...]] = 1
|
||||
mlp_ratio: float = 4.
|
||||
pool_first: bool = False
|
||||
expand_attn: bool = True
|
||||
qkv_bias: bool = True
|
||||
use_cls_token: bool = False
|
||||
use_abs_pos: bool = False
|
||||
residual_pooling: bool = True
|
||||
mode: str = 'conv'
|
||||
kernel_qkv: Tuple[int, int] = (3, 3)
|
||||
stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2))
|
||||
stride_kv: Optional[Tuple[Tuple[int, int]]] = None
|
||||
stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4)
|
||||
patch_kernel: Tuple[int, int] = (7, 7)
|
||||
patch_stride: Tuple[int, int] = (4, 4)
|
||||
patch_padding: Tuple[int, int] = (3, 3)
|
||||
pool_type: str = 'max'
|
||||
rel_pos_type: str = 'spatial'
|
||||
act_layer: Union[str, Tuple[str, str]] = 'gelu'
|
||||
norm_layer: Union[str, Tuple[str, str]] = 'layernorm'
|
||||
norm_eps: float = 1e-6
|
||||
|
||||
def __post_init__(self):
|
||||
num_stages = len(self.depths)
|
||||
if not isinstance(self.embed_dim, (tuple, list)):
|
||||
self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages))
|
||||
assert len(self.embed_dim) == num_stages
|
||||
|
||||
if not isinstance(self.num_heads, (tuple, list)):
|
||||
self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages))
|
||||
assert len(self.num_heads) == num_stages
|
||||
|
||||
if self.stride_kv_adaptive is not None and self.stride_kv is None:
|
||||
_stride_kv = self.stride_kv_adaptive
|
||||
pool_kv_stride = []
|
||||
for i in range(num_stages):
|
||||
if min(self.stride_q[i]) > 1:
|
||||
_stride_kv = [
|
||||
max(_stride_kv[d] // self.stride_q[i][d], 1)
|
||||
for d in range(len(_stride_kv))
|
||||
]
|
||||
pool_kv_stride.append(tuple(_stride_kv))
|
||||
self.stride_kv = tuple(pool_kv_stride)
|
||||
|
||||
|
||||
model_cfgs = dict(
|
||||
mvitv2_tiny=MultiScaleVitCfg(
|
||||
depths=(1, 2, 5, 2),
|
||||
),
|
||||
mvitv2_small=MultiScaleVitCfg(
|
||||
depths=(1, 2, 11, 2),
|
||||
),
|
||||
mvitv2_base=MultiScaleVitCfg(
|
||||
depths=(2, 3, 16, 3),
|
||||
),
|
||||
mvitv2_large=MultiScaleVitCfg(
|
||||
depths=(2, 6, 36, 4),
|
||||
embed_dim=144,
|
||||
num_heads=2,
|
||||
expand_attn=False,
|
||||
),
|
||||
|
||||
mvitv2_base_in21k=MultiScaleVitCfg(
|
||||
depths=(2, 3, 16, 3),
|
||||
),
|
||||
mvitv2_large_in21k=MultiScaleVitCfg(
|
||||
depths=(2, 6, 36, 4),
|
||||
embed_dim=144,
|
||||
num_heads=2,
|
||||
expand_attn=False,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def prod(iterable):
|
||||
return reduce(operator.mul, iterable, 1)
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
PatchEmbed.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim_in=3,
|
||||
dim_out=768,
|
||||
kernel=(7, 7),
|
||||
stride=(4, 4),
|
||||
padding=(3, 3),
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.proj = nn.Conv2d(
|
||||
dim_in,
|
||||
dim_out,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
|
||||
x = self.proj(x)
|
||||
# B C H W -> B HW C
|
||||
return x.flatten(2).transpose(1, 2), x.shape[-2:]
|
||||
|
||||
|
||||
@register_notrace_function
|
||||
def reshape_pre_pool(
|
||||
x,
|
||||
feat_size: List[int],
|
||||
has_cls_token: bool = True
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
H, W = feat_size
|
||||
if has_cls_token:
|
||||
cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :]
|
||||
else:
|
||||
cls_tok = None
|
||||
x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous()
|
||||
return x, cls_tok
|
||||
|
||||
|
||||
@register_notrace_function
|
||||
def reshape_post_pool(
|
||||
x,
|
||||
num_heads: int,
|
||||
cls_tok: Optional[torch.Tensor] = None
|
||||
) -> Tuple[torch.Tensor, List[int]]:
|
||||
feat_size = [x.shape[2], x.shape[3]]
|
||||
L_pooled = x.shape[2] * x.shape[3]
|
||||
x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3)
|
||||
if cls_tok is not None:
|
||||
x = torch.cat((cls_tok, x), dim=2)
|
||||
return x, feat_size
|
||||
|
||||
|
||||
@register_notrace_function
|
||||
def cal_rel_pos_type(
|
||||
attn: torch.Tensor,
|
||||
q: torch.Tensor,
|
||||
has_cls_token: bool,
|
||||
q_size: List[int],
|
||||
k_size: List[int],
|
||||
rel_pos_h: torch.Tensor,
|
||||
rel_pos_w: torch.Tensor,
|
||||
):
|
||||
"""
|
||||
Spatial Relative Positional Embeddings.
|
||||
"""
|
||||
sp_idx = 1 if has_cls_token else 0
|
||||
q_h, q_w = q_size
|
||||
k_h, k_w = k_size
|
||||
|
||||
# Scale up rel pos if shapes for q and k are different.
|
||||
q_h_ratio = max(k_h / q_h, 1.0)
|
||||
k_h_ratio = max(q_h / k_h, 1.0)
|
||||
dist_h = torch.arange(q_h)[:, None] * q_h_ratio - torch.arange(k_h)[None, :] * k_h_ratio
|
||||
dist_h += (k_h - 1) * k_h_ratio
|
||||
q_w_ratio = max(k_w / q_w, 1.0)
|
||||
k_w_ratio = max(q_w / k_w, 1.0)
|
||||
dist_w = torch.arange(q_w)[:, None] * q_w_ratio - torch.arange(k_w)[None, :] * k_w_ratio
|
||||
dist_w += (k_w - 1) * k_w_ratio
|
||||
|
||||
Rh = rel_pos_h[dist_h.long()]
|
||||
Rw = rel_pos_w[dist_w.long()]
|
||||
|
||||
B, n_head, q_N, dim = q.shape
|
||||
|
||||
r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim)
|
||||
rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, Rh)
|
||||
rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, Rw)
|
||||
|
||||
attn[:, :, sp_idx:, sp_idx:] = (
|
||||
attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w)
|
||||
+ rel_h[:, :, :, :, :, None]
|
||||
+ rel_w[:, :, :, :, None, :]
|
||||
).view(B, -1, q_h * q_w, k_h * k_w)
|
||||
|
||||
return attn
|
||||
|
||||
|
||||
class MultiScaleAttentionPoolFirst(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out,
|
||||
feat_size,
|
||||
num_heads=8,
|
||||
qkv_bias=True,
|
||||
mode="conv",
|
||||
kernel_q=(1, 1),
|
||||
kernel_kv=(1, 1),
|
||||
stride_q=(1, 1),
|
||||
stride_kv=(1, 1),
|
||||
has_cls_token=True,
|
||||
rel_pos_type='spatial',
|
||||
residual_pooling=True,
|
||||
norm_layer=nn.LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.dim_out = dim_out
|
||||
self.head_dim = dim_out // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.has_cls_token = has_cls_token
|
||||
padding_q = tuple([int(q // 2) for q in kernel_q])
|
||||
padding_kv = tuple([int(kv // 2) for kv in kernel_kv])
|
||||
|
||||
self.q = nn.Linear(dim, dim_out, bias=qkv_bias)
|
||||
self.k = nn.Linear(dim, dim_out, bias=qkv_bias)
|
||||
self.v = nn.Linear(dim, dim_out, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim_out, dim_out)
|
||||
|
||||
# Skip pooling with kernel and stride size of (1, 1, 1).
|
||||
if prod(kernel_q) == 1 and prod(stride_q) == 1:
|
||||
kernel_q = None
|
||||
if prod(kernel_kv) == 1 and prod(stride_kv) == 1:
|
||||
kernel_kv = None
|
||||
self.mode = mode
|
||||
self.unshared = mode == 'conv_unshared'
|
||||
self.pool_q, self.pool_k, self.pool_v = None, None, None
|
||||
self.norm_q, self.norm_k, self.norm_v = None, None, None
|
||||
if mode in ("avg", "max"):
|
||||
pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d
|
||||
if kernel_q:
|
||||
self.pool_q = pool_op(kernel_q, stride_q, padding_q)
|
||||
if kernel_kv:
|
||||
self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv)
|
||||
self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv)
|
||||
elif mode == "conv" or mode == "conv_unshared":
|
||||
dim_conv = dim // num_heads if mode == "conv" else dim
|
||||
if kernel_q:
|
||||
self.pool_q = nn.Conv2d(
|
||||
dim_conv,
|
||||
dim_conv,
|
||||
kernel_q,
|
||||
stride=stride_q,
|
||||
padding=padding_q,
|
||||
groups=dim_conv,
|
||||
bias=False,
|
||||
)
|
||||
self.norm_q = norm_layer(dim_conv)
|
||||
if kernel_kv:
|
||||
self.pool_k = nn.Conv2d(
|
||||
dim_conv,
|
||||
dim_conv,
|
||||
kernel_kv,
|
||||
stride=stride_kv,
|
||||
padding=padding_kv,
|
||||
groups=dim_conv,
|
||||
bias=False,
|
||||
)
|
||||
self.norm_k = norm_layer(dim_conv)
|
||||
self.pool_v = nn.Conv2d(
|
||||
dim_conv,
|
||||
dim_conv,
|
||||
kernel_kv,
|
||||
stride=stride_kv,
|
||||
padding=padding_kv,
|
||||
groups=dim_conv,
|
||||
bias=False,
|
||||
)
|
||||
self.norm_v = norm_layer(dim_conv)
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported model {mode}")
|
||||
|
||||
# relative pos embedding
|
||||
self.rel_pos_type = rel_pos_type
|
||||
if self.rel_pos_type == 'spatial':
|
||||
assert feat_size[0] == feat_size[1]
|
||||
size = feat_size[0]
|
||||
q_size = size // stride_q[1] if len(stride_q) > 0 else size
|
||||
kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size
|
||||
rel_sp_dim = 2 * max(q_size, kv_size) - 1
|
||||
|
||||
self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
|
||||
self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
|
||||
trunc_normal_tf_(self.rel_pos_h, std=0.02)
|
||||
trunc_normal_tf_(self.rel_pos_w, std=0.02)
|
||||
|
||||
self.residual_pooling = residual_pooling
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
B, N, _ = x.shape
|
||||
|
||||
fold_dim = 1 if self.unshared else self.num_heads
|
||||
x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3)
|
||||
q = k = v = x
|
||||
|
||||
if self.pool_q is not None:
|
||||
q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token)
|
||||
q = self.pool_q(q)
|
||||
q, q_size = reshape_post_pool(q, self.num_heads, q_tok)
|
||||
else:
|
||||
q_size = feat_size
|
||||
if self.norm_q is not None:
|
||||
q = self.norm_q(q)
|
||||
|
||||
if self.pool_k is not None:
|
||||
k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token)
|
||||
k = self.pool_k(k)
|
||||
k, k_size = reshape_post_pool(k, self.num_heads, k_tok)
|
||||
else:
|
||||
k_size = feat_size
|
||||
if self.norm_k is not None:
|
||||
k = self.norm_k(k)
|
||||
|
||||
if self.pool_v is not None:
|
||||
v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token)
|
||||
v = self.pool_v(v)
|
||||
v, v_size = reshape_post_pool(v, self.num_heads, v_tok)
|
||||
else:
|
||||
v_size = feat_size
|
||||
if self.norm_v is not None:
|
||||
v = self.norm_v(v)
|
||||
|
||||
q_N = q_size[0] * q_size[1] + int(self.has_cls_token)
|
||||
q = q.permute(0, 2, 1, 3).reshape(B, q_N, -1)
|
||||
q = self.q(q).reshape(B, q_N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
|
||||
k_N = k_size[0] * k_size[1] + int(self.has_cls_token)
|
||||
k = k.permute(0, 2, 1, 3).reshape(B, k_N, -1)
|
||||
k = self.k(k).reshape(B, k_N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
|
||||
v_N = v_size[0] * v_size[1] + int(self.has_cls_token)
|
||||
v = v.permute(0, 2, 1, 3).reshape(B, v_N, -1)
|
||||
v = self.v(v).reshape(B, v_N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
|
||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||
if self.rel_pos_type == 'spatial':
|
||||
attn = cal_rel_pos_type(
|
||||
attn,
|
||||
q,
|
||||
self.has_cls_token,
|
||||
q_size,
|
||||
k_size,
|
||||
self.rel_pos_h,
|
||||
self.rel_pos_w,
|
||||
)
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = attn @ v
|
||||
|
||||
if self.residual_pooling:
|
||||
x = x + q
|
||||
|
||||
x = x.transpose(1, 2).reshape(B, -1, self.dim_out)
|
||||
x = self.proj(x)
|
||||
|
||||
return x, q_size
|
||||
|
||||
|
||||
class MultiScaleAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out,
|
||||
feat_size,
|
||||
num_heads=8,
|
||||
qkv_bias=True,
|
||||
mode="conv",
|
||||
kernel_q=(1, 1),
|
||||
kernel_kv=(1, 1),
|
||||
stride_q=(1, 1),
|
||||
stride_kv=(1, 1),
|
||||
has_cls_token=True,
|
||||
rel_pos_type='spatial',
|
||||
residual_pooling=True,
|
||||
norm_layer=nn.LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.dim_out = dim_out
|
||||
self.head_dim = dim_out // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.has_cls_token = has_cls_token
|
||||
padding_q = tuple([int(q // 2) for q in kernel_q])
|
||||
padding_kv = tuple([int(kv // 2) for kv in kernel_kv])
|
||||
|
||||
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim_out, dim_out)
|
||||
|
||||
# Skip pooling with kernel and stride size of (1, 1, 1).
|
||||
if prod(kernel_q) == 1 and prod(stride_q) == 1:
|
||||
kernel_q = None
|
||||
if prod(kernel_kv) == 1 and prod(stride_kv) == 1:
|
||||
kernel_kv = None
|
||||
self.mode = mode
|
||||
self.unshared = mode == 'conv_unshared'
|
||||
self.norm_q, self.norm_k, self.norm_v = None, None, None
|
||||
self.pool_q, self.pool_k, self.pool_v = None, None, None
|
||||
if mode in ("avg", "max"):
|
||||
pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d
|
||||
if kernel_q:
|
||||
self.pool_q = pool_op(kernel_q, stride_q, padding_q)
|
||||
if kernel_kv:
|
||||
self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv)
|
||||
self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv)
|
||||
elif mode == "conv" or mode == "conv_unshared":
|
||||
dim_conv = dim_out // num_heads if mode == "conv" else dim_out
|
||||
if kernel_q:
|
||||
self.pool_q = nn.Conv2d(
|
||||
dim_conv,
|
||||
dim_conv,
|
||||
kernel_q,
|
||||
stride=stride_q,
|
||||
padding=padding_q,
|
||||
groups=dim_conv,
|
||||
bias=False,
|
||||
)
|
||||
self.norm_q = norm_layer(dim_conv)
|
||||
if kernel_kv:
|
||||
self.pool_k = nn.Conv2d(
|
||||
dim_conv,
|
||||
dim_conv,
|
||||
kernel_kv,
|
||||
stride=stride_kv,
|
||||
padding=padding_kv,
|
||||
groups=dim_conv,
|
||||
bias=False,
|
||||
)
|
||||
self.norm_k = norm_layer(dim_conv)
|
||||
self.pool_v = nn.Conv2d(
|
||||
dim_conv,
|
||||
dim_conv,
|
||||
kernel_kv,
|
||||
stride=stride_kv,
|
||||
padding=padding_kv,
|
||||
groups=dim_conv,
|
||||
bias=False,
|
||||
)
|
||||
self.norm_v = norm_layer(dim_conv)
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported model {mode}")
|
||||
|
||||
# relative pos embedding
|
||||
self.rel_pos_type = rel_pos_type
|
||||
if self.rel_pos_type == 'spatial':
|
||||
assert feat_size[0] == feat_size[1]
|
||||
size = feat_size[0]
|
||||
q_size = size // stride_q[1] if len(stride_q) > 0 else size
|
||||
kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size
|
||||
rel_sp_dim = 2 * max(q_size, kv_size) - 1
|
||||
|
||||
self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
|
||||
self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
|
||||
trunc_normal_tf_(self.rel_pos_h, std=0.02)
|
||||
trunc_normal_tf_(self.rel_pos_w, std=0.02)
|
||||
|
||||
self.residual_pooling = residual_pooling
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
B, N, _ = x.shape
|
||||
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(dim=0)
|
||||
|
||||
if self.pool_q is not None:
|
||||
q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token)
|
||||
q = self.pool_q(q)
|
||||
q, q_size = reshape_post_pool(q, self.num_heads, q_tok)
|
||||
else:
|
||||
q_size = feat_size
|
||||
if self.norm_q is not None:
|
||||
q = self.norm_q(q)
|
||||
|
||||
if self.pool_k is not None:
|
||||
k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token)
|
||||
k = self.pool_k(k)
|
||||
k, k_size = reshape_post_pool(k, self.num_heads, k_tok)
|
||||
else:
|
||||
k_size = feat_size
|
||||
if self.norm_k is not None:
|
||||
k = self.norm_k(k)
|
||||
|
||||
if self.pool_v is not None:
|
||||
v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token)
|
||||
v = self.pool_v(v)
|
||||
v, _ = reshape_post_pool(v, self.num_heads, v_tok)
|
||||
if self.norm_v is not None:
|
||||
v = self.norm_v(v)
|
||||
|
||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||
if self.rel_pos_type == 'spatial':
|
||||
attn = cal_rel_pos_type(
|
||||
attn,
|
||||
q,
|
||||
self.has_cls_token,
|
||||
q_size,
|
||||
k_size,
|
||||
self.rel_pos_h,
|
||||
self.rel_pos_w,
|
||||
)
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = attn @ v
|
||||
|
||||
if self.residual_pooling:
|
||||
x = x + q
|
||||
|
||||
x = x.transpose(1, 2).reshape(B, -1, self.dim_out)
|
||||
x = self.proj(x)
|
||||
|
||||
return x, q_size
|
||||
|
||||
|
||||
class MultiScaleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out,
|
||||
num_heads,
|
||||
feat_size,
|
||||
mlp_ratio=4.0,
|
||||
qkv_bias=True,
|
||||
drop_path=0.0,
|
||||
norm_layer=nn.LayerNorm,
|
||||
kernel_q=(1, 1),
|
||||
kernel_kv=(1, 1),
|
||||
stride_q=(1, 1),
|
||||
stride_kv=(1, 1),
|
||||
mode="conv",
|
||||
has_cls_token=True,
|
||||
expand_attn=False,
|
||||
pool_first=False,
|
||||
rel_pos_type='spatial',
|
||||
residual_pooling=True,
|
||||
):
|
||||
super().__init__()
|
||||
proj_needed = dim != dim_out
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
self.has_cls_token = has_cls_token
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
|
||||
self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None
|
||||
if stride_q and prod(stride_q) > 1:
|
||||
kernel_skip = [s + 1 if s > 1 else s for s in stride_q]
|
||||
stride_skip = stride_q
|
||||
padding_skip = [int(skip // 2) for skip in kernel_skip]
|
||||
self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip)
|
||||
else:
|
||||
self.shortcut_pool_attn = None
|
||||
|
||||
att_dim = dim_out if expand_attn else dim
|
||||
attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention
|
||||
self.attn = attn_layer(
|
||||
dim,
|
||||
att_dim,
|
||||
num_heads=num_heads,
|
||||
feat_size=feat_size,
|
||||
qkv_bias=qkv_bias,
|
||||
kernel_q=kernel_q,
|
||||
kernel_kv=kernel_kv,
|
||||
stride_q=stride_q,
|
||||
stride_kv=stride_kv,
|
||||
norm_layer=norm_layer,
|
||||
has_cls_token=has_cls_token,
|
||||
mode=mode,
|
||||
rel_pos_type=rel_pos_type,
|
||||
residual_pooling=residual_pooling,
|
||||
)
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(att_dim)
|
||||
mlp_dim_out = dim_out
|
||||
self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None
|
||||
self.mlp = Mlp(
|
||||
in_features=att_dim,
|
||||
hidden_features=int(att_dim * mlp_ratio),
|
||||
out_features=mlp_dim_out,
|
||||
)
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
def _shortcut_pool(self, x, feat_size: List[int]):
|
||||
if self.shortcut_pool_attn is None:
|
||||
return x
|
||||
if self.has_cls_token:
|
||||
cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :]
|
||||
else:
|
||||
cls_tok = None
|
||||
B, L, C = x.shape
|
||||
H, W = feat_size
|
||||
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
|
||||
x = self.shortcut_pool_attn(x)
|
||||
x = x.reshape(B, C, -1).transpose(1, 2)
|
||||
if cls_tok is not None:
|
||||
x = torch.cat((cls_tok, x), dim=2)
|
||||
return x
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
x_norm = self.norm1(x)
|
||||
# NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj
|
||||
x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm)
|
||||
x_shortcut = self._shortcut_pool(x_shortcut, feat_size)
|
||||
x, feat_size_new = self.attn(x_norm, feat_size)
|
||||
x = x_shortcut + self.drop_path1(x)
|
||||
|
||||
x_norm = self.norm2(x)
|
||||
x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm)
|
||||
x = x_shortcut + self.drop_path2(self.mlp(x_norm))
|
||||
return x, feat_size_new
|
||||
|
||||
|
||||
class MultiScaleVitStage(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out,
|
||||
depth,
|
||||
num_heads,
|
||||
feat_size,
|
||||
mlp_ratio=4.0,
|
||||
qkv_bias=True,
|
||||
mode="conv",
|
||||
kernel_q=(1, 1),
|
||||
kernel_kv=(1, 1),
|
||||
stride_q=(1, 1),
|
||||
stride_kv=(1, 1),
|
||||
has_cls_token=True,
|
||||
expand_attn=False,
|
||||
pool_first=False,
|
||||
rel_pos_type='spatial',
|
||||
residual_pooling=True,
|
||||
norm_layer=nn.LayerNorm,
|
||||
drop_path=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.grad_checkpointing = False
|
||||
|
||||
self.blocks = nn.ModuleList()
|
||||
if expand_attn:
|
||||
out_dims = (dim_out,) * depth
|
||||
else:
|
||||
out_dims = (dim,) * (depth - 1) + (dim_out,)
|
||||
|
||||
for i in range(depth):
|
||||
attention_block = MultiScaleBlock(
|
||||
dim=dim,
|
||||
dim_out=out_dims[i],
|
||||
num_heads=num_heads,
|
||||
feat_size=feat_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
kernel_q=kernel_q,
|
||||
kernel_kv=kernel_kv,
|
||||
stride_q=stride_q if i == 0 else (1, 1),
|
||||
stride_kv=stride_kv,
|
||||
mode=mode,
|
||||
has_cls_token=has_cls_token,
|
||||
pool_first=pool_first,
|
||||
rel_pos_type=rel_pos_type,
|
||||
residual_pooling=residual_pooling,
|
||||
expand_attn=expand_attn,
|
||||
norm_layer=norm_layer,
|
||||
drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path,
|
||||
)
|
||||
dim = out_dims[i]
|
||||
self.blocks.append(attention_block)
|
||||
if i == 0:
|
||||
feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)])
|
||||
|
||||
self.feat_size = feat_size
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
for blk in self.blocks:
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x, feat_size = checkpoint.checkpoint(blk, x, feat_size)
|
||||
else:
|
||||
x, feat_size = blk(x, feat_size)
|
||||
return x, feat_size
|
||||
|
||||
|
||||
class MultiScaleVit(nn.Module):
|
||||
"""
|
||||
Improved Multiscale Vision Transformers for Classification and Detection
|
||||
Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik,
|
||||
Christoph Feichtenhofer*
|
||||
https://arxiv.org/abs/2112.01526
|
||||
|
||||
Multiscale Vision Transformers
|
||||
Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik,
|
||||
Christoph Feichtenhofer*
|
||||
https://arxiv.org/abs/2104.11227
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg: MultiScaleVitCfg,
|
||||
img_size: Tuple[int, int] = (224, 224),
|
||||
in_chans: int = 3,
|
||||
global_pool: str = 'avg',
|
||||
num_classes: int = 1000,
|
||||
drop_path_rate: float = 0.,
|
||||
drop_rate: float = 0.,
|
||||
):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps)
|
||||
self.num_classes = num_classes
|
||||
self.drop_rate = drop_rate
|
||||
self.global_pool = global_pool
|
||||
self.depths = tuple(cfg.depths)
|
||||
self.expand_attn = cfg.expand_attn
|
||||
|
||||
embed_dim = cfg.embed_dim[0]
|
||||
self.patch_embed = PatchEmbed(
|
||||
dim_in=in_chans,
|
||||
dim_out=embed_dim,
|
||||
kernel=cfg.patch_kernel,
|
||||
stride=cfg.patch_stride,
|
||||
padding=cfg.patch_padding,
|
||||
)
|
||||
patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1])
|
||||
num_patches = prod(patch_dims)
|
||||
|
||||
if cfg.use_cls_token:
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.num_prefix_tokens = 1
|
||||
pos_embed_dim = num_patches + 1
|
||||
else:
|
||||
self.num_prefix_tokens = 0
|
||||
self.cls_token = None
|
||||
pos_embed_dim = num_patches
|
||||
|
||||
if cfg.use_abs_pos:
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim))
|
||||
else:
|
||||
self.pos_embed = None
|
||||
|
||||
num_stages = len(cfg.embed_dim)
|
||||
feat_size = patch_dims
|
||||
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)]
|
||||
self.stages = nn.ModuleList()
|
||||
for i in range(num_stages):
|
||||
if cfg.expand_attn:
|
||||
dim_out = cfg.embed_dim[i]
|
||||
else:
|
||||
dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)]
|
||||
stage = MultiScaleVitStage(
|
||||
dim=embed_dim,
|
||||
dim_out=dim_out,
|
||||
depth=cfg.depths[i],
|
||||
num_heads=cfg.num_heads[i],
|
||||
feat_size=feat_size,
|
||||
mlp_ratio=cfg.mlp_ratio,
|
||||
qkv_bias=cfg.qkv_bias,
|
||||
mode=cfg.mode,
|
||||
pool_first=cfg.pool_first,
|
||||
expand_attn=cfg.expand_attn,
|
||||
kernel_q=cfg.kernel_qkv,
|
||||
kernel_kv=cfg.kernel_qkv,
|
||||
stride_q=cfg.stride_q[i],
|
||||
stride_kv=cfg.stride_kv[i],
|
||||
has_cls_token=cfg.use_cls_token,
|
||||
rel_pos_type=cfg.rel_pos_type,
|
||||
residual_pooling=cfg.residual_pooling,
|
||||
norm_layer=norm_layer,
|
||||
drop_path=dpr[i],
|
||||
)
|
||||
embed_dim = dim_out
|
||||
feat_size = stage.feat_size
|
||||
self.stages.append(stage)
|
||||
|
||||
self.num_features = embed_dim
|
||||
self.norm = norm_layer(embed_dim)
|
||||
self.head = nn.Sequential(OrderedDict([
|
||||
('drop', nn.Dropout(self.drop_rate)),
|
||||
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())
|
||||
]))
|
||||
|
||||
if self.pos_embed is not None:
|
||||
trunc_normal_tf_(self.pos_embed, std=0.02)
|
||||
if self.cls_token is not None:
|
||||
trunc_normal_tf_(self.cls_token, std=0.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_tf_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {k for k, _ in self.named_parameters()
|
||||
if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])}
|
||||
|
||||
@torch.jit.ignore
|
||||
def group_matcher(self, coarse=False):
|
||||
matcher = dict(
|
||||
stem=r'^patch_embed', # stem and embed
|
||||
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
|
||||
)
|
||||
return matcher
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
for s in self.stages:
|
||||
s.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def get_classifier(self):
|
||||
return self.head.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=None):
|
||||
self.num_classes = num_classes
|
||||
if global_pool is not None:
|
||||
self.global_pool = global_pool
|
||||
self.head = nn.Sequential(OrderedDict([
|
||||
('drop', nn.Dropout(self.drop_rate)),
|
||||
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())
|
||||
]))
|
||||
|
||||
def forward_features(self, x):
|
||||
x, feat_size = self.patch_embed(x)
|
||||
B, N, C = x.shape
|
||||
|
||||
if self.cls_token is not None:
|
||||
cls_tokens = self.cls_token.expand(B, -1, -1)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
|
||||
for stage in self.stages:
|
||||
x, feat_size = stage(x, feat_size)
|
||||
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
if self.global_pool:
|
||||
if self.global_pool == 'avg':
|
||||
x = x[:, self.num_prefix_tokens:].mean(1)
|
||||
else:
|
||||
x = x[:, 0]
|
||||
return x if pre_logits else self.head(x)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model):
|
||||
if 'stages.0.blocks.0.norm1.weight' in state_dict:
|
||||
return state_dict
|
||||
|
||||
import re
|
||||
if 'model_state' in state_dict:
|
||||
state_dict = state_dict['model_state']
|
||||
|
||||
depths = getattr(model, 'depths', None)
|
||||
expand_attn = getattr(model, 'expand_attn', True)
|
||||
assert depths is not None, 'model requires depth attribute to remap checkpoints'
|
||||
depth_map = {}
|
||||
block_idx = 0
|
||||
for stage_idx, d in enumerate(depths):
|
||||
depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)})
|
||||
block_idx += d
|
||||
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
k = re.sub(
|
||||
r'blocks\.(\d+)',
|
||||
lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}',
|
||||
k)
|
||||
|
||||
if expand_attn:
|
||||
k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k)
|
||||
else:
|
||||
k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k)
|
||||
if 'head' in k:
|
||||
k = k.replace('head.projection', 'head.fc')
|
||||
out_dict[k] = v
|
||||
|
||||
# for k, v in state_dict.items():
|
||||
# if model.pos_embed is not None and k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
|
||||
# # To resize pos embedding when using model at different size from pretrained weights
|
||||
# v = resize_pos_embed(
|
||||
# v,
|
||||
# model.pos_embed,
|
||||
# 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1),
|
||||
# model.patch_embed.grid_size
|
||||
# )
|
||||
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs):
|
||||
return build_model_with_cfg(
|
||||
MultiScaleVit, variant, pretrained,
|
||||
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(flatten_sequential=True),
|
||||
**kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def mvitv2_tiny(pretrained=False, **kwargs):
|
||||
return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def mvitv2_small(pretrained=False, **kwargs):
|
||||
return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def mvitv2_base(pretrained=False, **kwargs):
|
||||
return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def mvitv2_large(pretrained=False, **kwargs):
|
||||
return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs)
|
||||
|
||||
|
||||
# @register_model
|
||||
# def mvitv2_base_in21k(pretrained=False, **kwargs):
|
||||
# return _create_mvitv2('mvitv2_base_in21k', pretrained=pretrained, **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def mvitv2_large_in21k(pretrained=False, **kwargs):
|
||||
# return _create_mvitv2('mvitv2_large_in21k', pretrained=pretrained, **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def mvitv2_huge_in21k(pretrained=False, **kwargs):
|
||||
# return _create_mvitv2('mvitv2_huge_in21k', pretrained=pretrained, **kwargs)
|
@ -0,0 +1,476 @@
|
||||
""" Pyramid Vision Transformer v2
|
||||
|
||||
@misc{wang2021pvtv2,
|
||||
title={PVTv2: Improved Baselines with Pyramid Vision Transformer},
|
||||
author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and
|
||||
Tong Lu and Ping Luo and Ling Shao},
|
||||
year={2021},
|
||||
eprint={2106.13797},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
|
||||
Based on Apache 2.0 licensed code at https://github.com/whai362/PVT
|
||||
|
||||
Modifications and timm support by / Copyright 2022, Ross Wightman
|
||||
"""
|
||||
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Tuple, List, Callable, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .helpers import build_model_with_cfg
|
||||
from .layers import DropPath, to_2tuple, to_ntuple, trunc_normal_
|
||||
from .registry import register_model
|
||||
|
||||
__all__ = ['PyramidVisionTransformerV2']
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.9, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'patch_embed.proj', 'classifier': 'head', 'fixed_input_size': False,
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
'pvt_v2_b0': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth'),
|
||||
'pvt_v2_b1': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b1.pth'),
|
||||
'pvt_v2_b2': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'),
|
||||
'pvt_v2_b3': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b3.pth'),
|
||||
'pvt_v2_b4': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b4.pth'),
|
||||
'pvt_v2_b5': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b5.pth'),
|
||||
'pvt_v2_b2_li': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2_li.pth')
|
||||
}
|
||||
|
||||
|
||||
class MlpWithDepthwiseConv(nn.Module):
|
||||
def __init__(
|
||||
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
|
||||
drop=0., extra_relu=False):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.relu = nn.ReLU() if extra_relu else nn.Identity()
|
||||
self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
x = self.fc1(x)
|
||||
B, N, C = x.shape
|
||||
x = x.transpose(1, 2).view(B, C, feat_size[0], feat_size[1])
|
||||
x = self.relu(x)
|
||||
x = self.dwconv(x)
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
sr_ratio=1,
|
||||
linear_attn=False,
|
||||
qkv_bias=True,
|
||||
attn_drop=0.,
|
||||
proj_drop=0.
|
||||
):
|
||||
super().__init__()
|
||||
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
||||
|
||||
self.dim = dim
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
||||
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
if not linear_attn:
|
||||
self.pool = None
|
||||
if sr_ratio > 1:
|
||||
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
else:
|
||||
self.sr = None
|
||||
self.norm = None
|
||||
self.act = None
|
||||
else:
|
||||
self.pool = nn.AdaptiveAvgPool2d(7)
|
||||
self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.act = nn.GELU()
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
B, N, C = x.shape
|
||||
H, W = feat_size
|
||||
q = self.q(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
|
||||
if self.pool is not None:
|
||||
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
||||
x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
|
||||
x_ = self.norm(x_)
|
||||
x_ = self.act(x_)
|
||||
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
else:
|
||||
if self.sr is not None:
|
||||
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
||||
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
||||
x_ = self.norm(x_)
|
||||
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
else:
|
||||
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
k, v = kv.unbind(0)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self, dim, num_heads, mlp_ratio=4., sr_ratio=1, linear_attn=False, qkv_bias=False,
|
||||
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
sr_ratio=sr_ratio,
|
||||
linear_attn=linear_attn,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop,
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = MlpWithDepthwiseConv(
|
||||
in_features=dim,
|
||||
hidden_features=int(dim * mlp_ratio),
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
extra_relu=linear_attn
|
||||
)
|
||||
|
||||
def forward(self, x, feat_size: List[int]):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x), feat_size))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x), feat_size))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class OverlapPatchEmbed(nn.Module):
|
||||
""" Image to Patch Embedding
|
||||
"""
|
||||
def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
||||
super().__init__()
|
||||
patch_size = to_2tuple(patch_size)
|
||||
assert max(patch_size) > stride, "Set larger patch_size than stride"
|
||||
self.patch_size = patch_size
|
||||
self.proj = nn.Conv2d(
|
||||
in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
||||
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
||||
self.norm = nn.LayerNorm(embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x)
|
||||
feat_size = x.shape[-2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
x = self.norm(x)
|
||||
return x, feat_size
|
||||
|
||||
|
||||
class PyramidVisionTransformerStage(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: int,
|
||||
depth: int,
|
||||
downsample: bool = True,
|
||||
num_heads: int = 8,
|
||||
sr_ratio: int = 1,
|
||||
linear_attn: bool = False,
|
||||
mlp_ratio: float = 4.0,
|
||||
qkv_bias: bool = True,
|
||||
drop: float = 0.,
|
||||
attn_drop: float = 0.,
|
||||
drop_path: Union[List[float], float] = 0.0,
|
||||
norm_layer: Callable = nn.LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.grad_checkpointing = False
|
||||
|
||||
if downsample:
|
||||
self.downsample = OverlapPatchEmbed(
|
||||
patch_size=3,
|
||||
stride=2,
|
||||
in_chans=dim,
|
||||
embed_dim=dim_out)
|
||||
else:
|
||||
assert dim == dim_out
|
||||
self.downsample = None
|
||||
|
||||
self.blocks = nn.ModuleList([Block(
|
||||
dim=dim_out,
|
||||
num_heads=num_heads,
|
||||
sr_ratio=sr_ratio,
|
||||
linear_attn=linear_attn,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
drop=drop,
|
||||
attn_drop=attn_drop,
|
||||
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
norm_layer=norm_layer,
|
||||
) for i in range(depth)])
|
||||
|
||||
self.norm = norm_layer(dim_out)
|
||||
|
||||
def forward(self, x, feat_size: List[int]) -> Tuple[torch.Tensor, List[int]]:
|
||||
if self.downsample is not None:
|
||||
x, feat_size = self.downsample(x)
|
||||
for blk in self.blocks:
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint.checkpoint(blk, x, feat_size)
|
||||
else:
|
||||
x = blk(x, feat_size)
|
||||
x = self.norm(x)
|
||||
x = x.reshape(x.shape[0], feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2).contiguous()
|
||||
return x, feat_size
|
||||
|
||||
|
||||
class PyramidVisionTransformerV2(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
img_size=None,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
global_pool='avg',
|
||||
depths=(3, 4, 6, 3),
|
||||
embed_dims=(64, 128, 256, 512),
|
||||
num_heads=(1, 2, 4, 8),
|
||||
sr_ratios=(8, 4, 2, 1),
|
||||
mlp_ratios=(8., 8., 4., 4.),
|
||||
qkv_bias=True,
|
||||
linear=False,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
norm_layer=nn.LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
assert global_pool in ('avg', '')
|
||||
self.global_pool = global_pool
|
||||
self.depths = depths
|
||||
num_stages = len(depths)
|
||||
mlp_ratios = to_ntuple(num_stages)(mlp_ratios)
|
||||
num_heads = to_ntuple(num_stages)(num_heads)
|
||||
sr_ratios = to_ntuple(num_stages)(sr_ratios)
|
||||
assert(len(embed_dims)) == num_stages
|
||||
|
||||
self.patch_embed = OverlapPatchEmbed(
|
||||
patch_size=7,
|
||||
stride=4,
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dims[0])
|
||||
|
||||
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
cur = 0
|
||||
prev_dim = embed_dims[0]
|
||||
self.stages = nn.ModuleList()
|
||||
for i in range(num_stages):
|
||||
self.stages.append(PyramidVisionTransformerStage(
|
||||
dim=prev_dim,
|
||||
dim_out=embed_dims[i],
|
||||
depth=depths[i],
|
||||
downsample=i > 0,
|
||||
num_heads=num_heads[i],
|
||||
sr_ratio=sr_ratios[i],
|
||||
mlp_ratio=mlp_ratios[i],
|
||||
linear_attn=linear,
|
||||
qkv_bias=qkv_bias,
|
||||
drop=drop_rate,
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[i],
|
||||
norm_layer=norm_layer
|
||||
))
|
||||
prev_dim = embed_dims[i]
|
||||
cur += depths[i]
|
||||
|
||||
# classification head
|
||||
self.num_features = embed_dims[-1]
|
||||
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Conv2d):
|
||||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
fan_out //= m.groups
|
||||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||||
if m.bias is not None:
|
||||
m.bias.data.zero_()
|
||||
|
||||
def freeze_patch_emb(self):
|
||||
self.patch_embed.requires_grad = False
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {}
|
||||
|
||||
@torch.jit.ignore
|
||||
def group_matcher(self, coarse=False):
|
||||
matcher = dict(
|
||||
stem=r'^patch_embed', # stem and embed
|
||||
blocks=r'^stages\.(\d+)'
|
||||
)
|
||||
return matcher
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
for s in self.stages:
|
||||
s.grad_checkpointing = enable
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=None):
|
||||
self.num_classes = num_classes
|
||||
if global_pool is not None:
|
||||
assert global_pool in ('avg', '')
|
||||
self.global_pool = global_pool
|
||||
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_features(self, x):
|
||||
x, feat_size = self.patch_embed(x)
|
||||
for stage in self.stages:
|
||||
x, feat_size = stage(x, feat_size=feat_size)
|
||||
return x
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
if self.global_pool:
|
||||
x = x.mean(dim=(-1, -2))
|
||||
return x if pre_logits else self.head(x)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _checkpoint_filter_fn(state_dict, model):
|
||||
""" Remap original checkpoints -> timm """
|
||||
if 'patch_embed.proj.weight' in state_dict:
|
||||
return state_dict # non-original checkpoint, no remapping needed
|
||||
|
||||
out_dict = {}
|
||||
import re
|
||||
for k, v in state_dict.items():
|
||||
if k.startswith('patch_embed'):
|
||||
k = k.replace('patch_embed1', 'patch_embed')
|
||||
k = k.replace('patch_embed2', 'stages.1.downsample')
|
||||
k = k.replace('patch_embed3', 'stages.2.downsample')
|
||||
k = k.replace('patch_embed4', 'stages.3.downsample')
|
||||
k = k.replace('dwconv.dwconv', 'dwconv')
|
||||
k = re.sub(r'block(\d+).(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.blocks.{x.group(2)}', k)
|
||||
k = re.sub(r'^norm(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.norm', k)
|
||||
out_dict[k] = v
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_pvt2(variant, pretrained=False, **kwargs):
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
||||
model = build_model_with_cfg(
|
||||
PyramidVisionTransformerV2, variant, pretrained,
|
||||
pretrained_filter_fn=_checkpoint_filter_fn,
|
||||
**kwargs
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b0(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(2, 2, 2, 2), embed_dims=(32, 64, 160, 256), num_heads=(1, 2, 5, 8),
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
return _create_pvt2('pvt_v2_b0', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b1(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(2, 2, 2, 2), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
return _create_pvt2('pvt_v2_b1', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b2(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
return _create_pvt2('pvt_v2_b2', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b3(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 18, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
return _create_pvt2('pvt_v2_b3', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b4(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 8, 27, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
return _create_pvt2('pvt_v2_b4', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b5(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 6, 40, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
||||
mlp_ratios=(4, 4, 4, 4), norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
**kwargs)
|
||||
return _create_pvt2('pvt_v2_b5', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def pvt_v2_b2_li(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), linear=True, **kwargs)
|
||||
return _create_pvt2('pvt_v2_b2_li', pretrained=pretrained, **model_kwargs)
|
||||
|
Loading…
Reference in new issue