Merge pull request #1655 from rwightman/levit_efficientformer_redux

Add EfficientFormer-V2, refactor EfficientFormer and Levit
pull/1659/head
Ross Wightman 1 year ago committed by GitHub
commit 4b383e8ffe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -23,9 +23,9 @@ _NORM_MAP = dict(
_NORM_TYPES = {m for n, m in _NORM_MAP.items()}
def create_norm_layer(layer_name, num_features, act_layer=None, apply_act=True, **kwargs):
layer = get_norm_layer(layer_name, act_layer=act_layer)
layer_instance = layer(num_features, apply_act=apply_act, **kwargs)
def create_norm_layer(layer_name, num_features, **kwargs):
layer = get_norm_layer(layer_name)
layer_instance = layer(num_features, **kwargs)
return layer_instance

@ -15,6 +15,7 @@ from .dla import *
from .dpn import *
from .edgenext import *
from .efficientformer import *
from .efficientformer_v2 import *
from .efficientnet import *
from .gcvit import *
from .ghostnet import *

@ -20,34 +20,13 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, to_2tuple, Mlp
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._pretrained import generate_default_cfgs
from ._registry import register_model
__all__ = ['EfficientFormer'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
'crop_pct': .95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'),
**kwargs
}
default_cfgs = dict(
efficientformer_l1=_cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/efficientformer_l1_1000d_224-5b08fab0.pth",
),
efficientformer_l3=_cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/efficientformer_l3_300d_224-6816624f.pth",
),
efficientformer_l7=_cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/efficientformer_l7_300d_224-e957ab75.pth",
),
)
EfficientFormer_width = {
'l1': (48, 96, 224, 448),
'l3': (64, 128, 320, 512),
@ -99,7 +78,7 @@ class Attention(torch.nn.Module):
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if self.training:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
@ -279,16 +258,17 @@ class MetaBlock2d(nn.Module):
):
super().__init__()
self.token_mixer = Pooling(pool_size=pool_size)
self.ls1 = LayerScale2d(dim, layer_scale_init_value)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = ConvMlpWithNorm(
dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer, drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.ls1 = LayerScale2d(dim, layer_scale_init_value)
self.ls2 = LayerScale2d(dim, layer_scale_init_value)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.ls1(self.token_mixer(x)))
x = x + self.drop_path(self.ls2(self.mlp(x)))
x = x + self.drop_path1(self.ls1(self.token_mixer(x)))
x = x + self.drop_path2(self.ls2(self.mlp(x)))
return x
@ -356,7 +336,10 @@ class EfficientFormerStage(nn.Module):
def forward(self, x):
x = self.downsample(x)
x = self.blocks(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
@ -514,6 +497,30 @@ def _checkpoint_filter_fn(state_dict, model):
return out_dict
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
'crop_pct': .95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'),
**kwargs
}
default_cfgs = generate_default_cfgs({
'efficientformer_l1.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformer_l3.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformer_l7.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
})
def _create_efficientformer(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
EfficientFormer, variant, pretrained,
@ -524,30 +531,30 @@ def _create_efficientformer(variant, pretrained=False, **kwargs):
@register_model
def efficientformer_l1(pretrained=False, **kwargs):
model_kwargs = dict(
model_args = dict(
depths=EfficientFormer_depth['l1'],
embed_dims=EfficientFormer_width['l1'],
num_vit=1,
**kwargs)
return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **model_kwargs)
)
return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformer_l3(pretrained=False, **kwargs):
model_kwargs = dict(
model_args = dict(
depths=EfficientFormer_depth['l3'],
embed_dims=EfficientFormer_width['l3'],
num_vit=4,
**kwargs)
return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **model_kwargs)
)
return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformer_l7(pretrained=False, **kwargs):
model_kwargs = dict(
model_args = dict(
depths=EfficientFormer_depth['l7'],
embed_dims=EfficientFormer_width['l7'],
num_vit=8,
**kwargs)
return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **model_kwargs)
)
return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **dict(model_args, **kwargs))

@ -0,0 +1,732 @@
""" EfficientFormer-V2
@article{
li2022rethinking,
title={Rethinking Vision Transformers for MobileNet Size and Speed},
author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian},
journal={arXiv preprint arXiv:2212.08059},
year={2022}
}
Significantly refactored and cleaned up for timm from original at: https://github.com/snap-research/EfficientFormer
Original code licensed Apache 2.0, Copyright (c) 2022 Snap Inc.
Modifications and timm support by / Copyright 2023, Ross Wightman
"""
import math
from functools import partial
from typing import Dict
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import create_conv2d, create_norm_layer, get_act_layer, get_norm_layer, ConvNormAct
from timm.layers import DropPath, trunc_normal_, to_2tuple, to_ntuple
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._pretrained import generate_default_cfgs
from ._registry import register_model
EfficientFormer_width = {
'L': (40, 80, 192, 384), # 26m 83.3% 6attn
'S2': (32, 64, 144, 288), # 12m 81.6% 4attn dp0.02
'S1': (32, 48, 120, 224), # 6.1m 79.0
'S0': (32, 48, 96, 176), # 75.0 75.7
}
EfficientFormer_depth = {
'L': (5, 5, 15, 10), # 26m 83.3%
'S2': (4, 4, 12, 8), # 12m
'S1': (3, 3, 9, 6), # 79.0
'S0': (2, 2, 6, 4), # 75.7
}
EfficientFormer_expansion_ratios = {
'L': (4, 4, (4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 4, 3, 3, 3, 3, 4, 4, 4)),
'S2': (4, 4, (4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 3, 3, 3, 3, 4, 4)),
'S1': (4, 4, (4, 4, 3, 3, 3, 3, 4, 4, 4), (4, 4, 3, 3, 4, 4)),
'S0': (4, 4, (4, 3, 3, 3, 4, 4), (4, 3, 3, 4)),
}
class ConvNorm(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding='',
dilation=1,
groups=1,
bias=True,
norm_layer='batchnorm2d',
norm_kwargs=None,
):
norm_kwargs = norm_kwargs or {}
super(ConvNorm, self).__init__()
self.conv = create_conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
self.bn = create_norm_layer(norm_layer, out_channels, **norm_kwargs)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class Attention2d(torch.nn.Module):
attention_bias_cache: Dict[str, torch.Tensor]
def __init__(
self,
dim=384,
key_dim=32,
num_heads=8,
attn_ratio=4,
resolution=7,
act_layer=nn.GELU,
stride=None,
):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
resolution = to_2tuple(resolution)
if stride is not None:
resolution = tuple([math.ceil(r / stride) for r in resolution])
self.stride_conv = ConvNorm(dim, dim, kernel_size=3, stride=stride, groups=dim)
self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
else:
self.stride_conv = None
self.upsample = None
self.resolution = resolution
self.N = self.resolution[0] * self.resolution[1]
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
kh = self.key_dim * self.num_heads
self.q = ConvNorm(dim, kh)
self.k = ConvNorm(dim, kh)
self.v = ConvNorm(dim, self.dh)
self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, groups=self.dh)
self.talking_head1 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1)
self.talking_head2 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1)
self.act = act_layer()
self.proj = ConvNorm(self.dh, dim, 1)
pos = torch.stack(torch.meshgrid(torch.arange(self.resolution[0]), torch.arange(self.resolution[1]))).flatten(1)
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs()
rel_pos = (rel_pos[0] * self.resolution[1]) + rel_pos[1]
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, self.N))
self.register_buffer('attention_bias_idxs', torch.LongTensor(rel_pos), persistent=False)
self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, x):
B, C, H, W = x.shape
if self.stride_conv is not None:
x = self.stride_conv(x)
q = self.q(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
v = self.v(x)
v_local = self.v_local(v)
v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
attn = (q @ k) * self.scale
attn = attn + self.get_attention_biases(x.device)
attn = self.talking_head1(attn)
attn = attn.softmax(dim=-1)
attn = self.talking_head2(attn)
x = (attn @ v).transpose(2, 3)
x = x.reshape(B, self.dh, self.resolution[0], self.resolution[1]) + v_local
if self.upsample is not None:
x = self.upsample(x)
x = self.act(x)
x = self.proj(x)
return x
class LocalGlobalQuery(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.pool = nn.AvgPool2d(1, 2, 0)
self.local = nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=2, padding=1, groups=in_dim)
self.proj = ConvNorm(in_dim, out_dim, 1)
def forward(self, x):
local_q = self.local(x)
pool_q = self.pool(x)
q = local_q + pool_q
q = self.proj(q)
return q
class Attention2dDownsample(torch.nn.Module):
attention_bias_cache: Dict[str, torch.Tensor]
def __init__(
self,
dim=384,
key_dim=16,
num_heads=8,
attn_ratio=4,
resolution=7,
out_dim=None,
act_layer=nn.GELU,
):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.resolution = to_2tuple(resolution)
self.resolution2 = tuple([math.ceil(r / 2) for r in self.resolution])
self.N = self.resolution[0] * self.resolution[1]
self.N2 = self.resolution2[0] * self.resolution2[1]
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
self.out_dim = out_dim or dim
kh = self.key_dim * self.num_heads
self.q = LocalGlobalQuery(dim, kh)
self.k = ConvNorm(dim, kh, 1)
self.v = ConvNorm(dim, self.dh, 1)
self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, stride=2, groups=self.dh)
self.act = act_layer()
self.proj = ConvNorm(self.dh, self.out_dim, 1)
self.attention_biases = nn.Parameter(torch.zeros(num_heads, self.N))
k_pos = torch.stack(torch.meshgrid(torch.arange(
self.resolution[1]),
torch.arange(self.resolution[1]))).flatten(1)
q_pos = torch.stack(torch.meshgrid(
torch.arange(0, self.resolution[0], step=2),
torch.arange(0, self.resolution[1], step=2))).flatten(1)
rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs()
rel_pos = (rel_pos[0] * self.resolution[1]) + rel_pos[1]
self.register_buffer('attention_bias_idxs', rel_pos, persistent=False)
self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, x):
B, C, H, W = x.shape
q = self.q(x).reshape(B, self.num_heads, -1, self.N2).permute(0, 1, 3, 2)
k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
v = self.v(x)
v_local = self.v_local(v)
v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
attn = (q @ k) * self.scale
attn = attn + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(2, 3)
x = x.reshape(B, self.dh, self.resolution2[0], self.resolution2[1]) + v_local
x = self.act(x)
x = self.proj(x)
return x
class Downsample(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=3,
stride=2,
padding=1,
resolution=7,
use_attn=False,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
):
super().__init__()
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
norm_layer = norm_layer or nn.Identity()
self.conv = ConvNorm(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
padding=padding,
norm_layer=norm_layer,
)
if use_attn:
self.attn = Attention2dDownsample(
dim=in_chs,
out_dim=out_chs,
resolution=resolution,
act_layer=act_layer,
)
else:
self.attn = None
def forward(self, x):
out = self.conv(x)
if self.attn is not None:
return self.attn(x) + out
return out
class ConvMlpWithNorm(nn.Module):
"""
Implementation of MLP with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
drop=0.,
mid_conv=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = ConvNormAct(
in_features, hidden_features, 1, bias=True, norm_layer=norm_layer, act_layer=act_layer)
if mid_conv:
self.mid = ConvNormAct(
hidden_features, hidden_features, 3,
groups=hidden_features, bias=True, norm_layer=norm_layer, act_layer=act_layer)
else:
self.mid = nn.Identity()
self.drop1 = nn.Dropout(drop)
self.fc2 = ConvNorm(hidden_features, out_features, 1, norm_layer=norm_layer)
self.drop2 = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.mid(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class LayerScale2d(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
gamma = self.gamma.view(1, -1, 1, 1)
return x.mul_(gamma) if self.inplace else x * gamma
class EfficientFormerV2Block(nn.Module):
def __init__(
self,
dim,
mlp_ratio=4.,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
drop=0.,
drop_path=0.,
layer_scale_init_value=1e-5,
resolution=7,
stride=None,
use_attn=True,
):
super().__init__()
if use_attn:
self.token_mixer = Attention2d(
dim,
resolution=resolution,
act_layer=act_layer,
stride=stride,
)
self.ls1 = LayerScale2d(
dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
else:
self.token_mixer = None
self.ls1 = None
self.drop_path1 = None
self.mlp = ConvMlpWithNorm(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
norm_layer=norm_layer,
drop=drop,
mid_conv=True,
)
self.ls2 = LayerScale2d(
dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
if self.token_mixer is not None:
x = x + self.drop_path1(self.ls1(self.token_mixer(x)))
x = x + self.drop_path2(self.ls2(self.mlp(x)))
return x
class Stem4(nn.Sequential):
def __init__(self, in_chs, out_chs, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d):
super().__init__()
self.stride = 4
self.conv1 = ConvNormAct(
in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1, bias=True,
norm_layer=norm_layer, act_layer=act_layer
)
self.conv2 = ConvNormAct(
out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1, bias=True,
norm_layer=norm_layer, act_layer=act_layer
)
class EfficientFormerV2Stage(nn.Module):
def __init__(
self,
dim,
dim_out,
depth,
resolution=7,
downsample=True,
block_stride=None,
downsample_use_attn=False,
block_use_attn=False,
num_vit=1,
mlp_ratio=4.,
drop=.0,
drop_path=0.,
layer_scale_init_value=1e-5,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
):
super().__init__()
self.grad_checkpointing = False
mlp_ratio = to_ntuple(depth)(mlp_ratio)
resolution = to_2tuple(resolution)
if downsample:
self.downsample = Downsample(
dim,
dim_out,
use_attn=downsample_use_attn,
resolution=resolution,
norm_layer=norm_layer,
act_layer=act_layer,
)
dim = dim_out
resolution = tuple([math.ceil(r / 2) for r in resolution])
else:
assert dim == dim_out
self.downsample = nn.Identity()
blocks = []
for block_idx in range(depth):
remain_idx = depth - num_vit - 1
b = EfficientFormerV2Block(
dim,
resolution=resolution,
stride=block_stride,
mlp_ratio=mlp_ratio[block_idx],
use_attn=block_use_attn and block_idx > remain_idx,
drop=drop,
drop_path=drop_path[block_idx],
layer_scale_init_value=layer_scale_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
blocks += [b]
self.blocks = nn.Sequential(*blocks)
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class EfficientFormerV2(nn.Module):
def __init__(
self,
depths,
in_chans=3,
img_size=224,
global_pool='avg',
embed_dims=None,
downsamples=None,
mlp_ratios=4,
norm_layer='batchnorm2d',
norm_eps=1e-5,
act_layer='gelu',
num_classes=1000,
drop_rate=0.,
drop_path_rate=0.,
layer_scale_init_value=1e-5,
num_vit=0,
distillation=True,
):
super().__init__()
assert global_pool in ('avg', '')
self.num_classes = num_classes
self.global_pool = global_pool
self.feature_info = []
img_size = to_2tuple(img_size)
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps)
act_layer = get_act_layer(act_layer)
self.stem = Stem4(in_chans, embed_dims[0], act_layer=act_layer, norm_layer=norm_layer)
prev_dim = embed_dims[0]
stride = 4
num_stages = len(depths)
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
downsamples = downsamples or (False,) + (True,) * (len(depths) - 1)
mlp_ratios = to_ntuple(num_stages)(mlp_ratios)
stages = []
for i in range(num_stages):
curr_resolution = tuple([math.ceil(s / stride) for s in img_size])
stage = EfficientFormerV2Stage(
prev_dim,
embed_dims[i],
depth=depths[i],
resolution=curr_resolution,
downsample=downsamples[i],
block_stride=2 if i == 2 else None,
downsample_use_attn=i >= 3,
block_use_attn=i >= 2,
num_vit=num_vit,
mlp_ratio=mlp_ratios[i],
drop=drop_rate,
drop_path=dpr[i],
layer_scale_init_value=layer_scale_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
if downsamples[i]:
stride *= 2
prev_dim = embed_dims[i]
self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{i}')]
stages.append(stage)
self.stages = nn.Sequential(*stages)
# Classifier head
self.num_features = embed_dims[-1]
self.norm = norm_layer(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
self.dist = distillation
if self.dist:
self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
else:
self.head_dist = None
self.apply(self.init_weights)
self.distilled_training = False
# init for classification
def init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {k for k, _ in self.named_parameters() if 'attention_biases' in k}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^stem', # stem and embed
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head, self.head_dist
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
@torch.jit.ignore
def set_distilled_training(self, enable=True):
self.distilled_training = enable
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool == 'avg':
x = x.mean(dim=(2, 3))
if pre_logits:
return x
x, x_dist = self.head(x), self.head_dist(x)
if self.distilled_training and self.training and not torch.jit.is_scripting():
# only return separate classification predictions when training in distilled mode
return x, x_dist
else:
# during standard train/finetune, inference average the classifier predictions
return (x + x_dist) / 2
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
'crop_pct': .95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'classifier': ('head', 'head_dist'), 'first_conv': 'stem.conv1.conv',
**kwargs
}
default_cfgs = generate_default_cfgs({
'efficientformerv2_s0.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformerv2_s1.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformerv2_s2.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformerv2_l.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
})
def _create_efficientformerv2(variant, pretrained=False, **kwargs):
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
model = build_model_with_cfg(
EfficientFormerV2, variant, pretrained,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs)
return model
@register_model
def efficientformerv2_s0(pretrained=False, **kwargs):
model_args = dict(
depths=EfficientFormer_depth['S0'],
embed_dims=EfficientFormer_width['S0'],
num_vit=2,
drop_path_rate=0.0,
mlp_ratios=EfficientFormer_expansion_ratios['S0'],
)
return _create_efficientformerv2('efficientformerv2_s0', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformerv2_s1(pretrained=False, **kwargs):
model_args = dict(
depths=EfficientFormer_depth['S1'],
embed_dims=EfficientFormer_width['S1'],
num_vit=2,
drop_path_rate=0.0,
mlp_ratios=EfficientFormer_expansion_ratios['S1'],
)
return _create_efficientformerv2('efficientformerv2_s1', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformerv2_s2(pretrained=False, **kwargs):
model_args = dict(
depths=EfficientFormer_depth['S2'],
embed_dims=EfficientFormer_width['S2'],
num_vit=4,
drop_path_rate=0.02,
mlp_ratios=EfficientFormer_expansion_ratios['S2'],
)
return _create_efficientformerv2('efficientformerv2_s2', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformerv2_l(pretrained=False, **kwargs):
model_args = dict(
depths=EfficientFormer_depth['L'],
embed_dims=EfficientFormer_width['L'],
num_vit=6,
drop_path_rate=0.1,
mlp_ratios=EfficientFormer_expansion_ratios['L'],
)
return _create_efficientformerv2('efficientformerv2_l', pretrained=pretrained, **dict(model_args, **kwargs))

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save