From 497be8343c8a3b9f002b67fa59e413e00bc54814 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Mon, 6 Feb 2023 23:43:14 -0800 Subject: [PATCH] Update README and version --- README.md | 20 +++++++++++++++++++- timm/version.py | 2 +- 2 files changed, 20 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 287b6f66..042eff3e 100644 --- a/README.md +++ b/README.md @@ -24,6 +24,24 @@ And a big thanks to all GitHub sponsors who helped with some of my costs before * ❗Updates after Oct 10, 2022 are available in 0.8.x pre-releases (`pip install --pre timm`) or cloning main❗ * Stable releases are 0.6.x and available by normal pip install or clone from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch. +### Feb 7, 2023 +* New inference benchmark numbers added in [results](results/) folder. +* Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes + * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256 + * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384 + * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256 + * `convnext_large_mlp.` - 87.9% @ 384x384 +* Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54). +* Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT +* Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub. + * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`. + * Minor updates to EfficientFormer. + * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required. +* Move ImageNet meta-data (synsets, indices) from `/results` to `timm/data/_info`. +* Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm` + * Update `inference.py` to use, try: `python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5` +* Ready for 0.8.10 pypi pre-release (final testing). + ### Jan 20, 2023 * Add two convnext 12k -> 1k fine-tunes at 384x384 * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384 @@ -571,7 +589,7 @@ Several (less common) features that I often utilize in my projects are included. ## Results -Model validation results can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/results/) and in the [results tables](results/README.md) +Model validation results can be found in the [results tables](results/README.md) ## Getting Started (Documentation) diff --git a/timm/version.py b/timm/version.py index c0211675..6394b4da 100644 --- a/timm/version.py +++ b/timm/version.py @@ -1 +1 @@ -__version__ = '0.8.9dev0' +__version__ = '0.8.10dev0'