From 3ff19079f993e9a91206a04c2b61896883064eeb Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Wed, 29 Jan 2020 13:11:38 -0800 Subject: [PATCH] Missed nn_ops.py from last commit --- timm/models/nn_ops.py | 146 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 146 insertions(+) create mode 100644 timm/models/nn_ops.py diff --git a/timm/models/nn_ops.py b/timm/models/nn_ops.py new file mode 100644 index 00000000..37286611 --- /dev/null +++ b/timm/models/nn_ops.py @@ -0,0 +1,146 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np +import math + +## Assembled CNN Tensorflow Impl +# +# def _bernoulli(shape, mean, seed=None, dtype=tf.float32): +# return tf.nn.relu(tf.sign(mean - tf.random_uniform(shape, minval=0, maxval=1, dtype=dtype, seed=seed))) +# +# +# def dropblock(x, keep_prob, block_size, gamma_scale=1.0, seed=None, name=None, +# data_format='channels_last', is_training=True): # pylint: disable=invalid-name +# """ +# Dropblock layer. For more details, refer to https://arxiv.org/abs/1810.12890 +# :param x: A floating point tensor. +# :param keep_prob: A scalar Tensor with the same type as x. The probability that each element is kept. +# :param block_size: The block size to drop +# :param gamma_scale: The multiplier to gamma. +# :param seed: Python integer. Used to create random seeds. +# :param name: A name for this operation (optional) +# :param data_format: 'channels_last' or 'channels_first' +# :param is_training: If False, do nothing. +# :return: A Tensor of the same shape of x. +# """ +# if not is_training: +# return x +# +# # Early return if nothing needs to be dropped. +# if (isinstance(keep_prob, float) and keep_prob == 1) or gamma_scale == 0: +# return x +# +# with tf.name_scope(name, "dropblock", [x]) as name: +# if not x.dtype.is_floating: +# raise ValueError("x has to be a floating point tensor since it's going to" +# " be scaled. Got a %s tensor instead." % x.dtype) +# if isinstance(keep_prob, float) and not 0 < keep_prob <= 1: +# raise ValueError("keep_prob must be a scalar tensor or a float in the " +# "range (0, 1], got %g" % keep_prob) +# +# br = (block_size - 1) // 2 +# tl = (block_size - 1) - br +# if data_format == 'channels_last': +# _, h, w, c = x.shape.as_list() +# sampling_mask_shape = tf.stack([1, h - block_size + 1, w - block_size + 1, c]) +# pad_shape = [[0, 0], [tl, br], [tl, br], [0, 0]] +# elif data_format == 'channels_first': +# _, c, h, w = x.shape.as_list() +# sampling_mask_shape = tf.stack([1, c, h - block_size + 1, w - block_size + 1]) +# pad_shape = [[0, 0], [0, 0], [tl, br], [tl, br]] +# else: +# raise NotImplementedError +# +# gamma = (1. - keep_prob) * (w * h) / (block_size ** 2) / ((w - block_size + 1) * (h - block_size + 1)) +# gamma = gamma_scale * gamma +# mask = _bernoulli(sampling_mask_shape, gamma, seed, tf.float32) +# mask = tf.pad(mask, pad_shape) +# +# xdtype_mask = tf.cast(mask, x.dtype) +# xdtype_mask = tf.layers.max_pooling2d( +# inputs=xdtype_mask, pool_size=block_size, +# strides=1, padding='SAME', +# data_format=data_format) +# +# xdtype_mask = 1 - xdtype_mask +# fp32_mask = tf.cast(xdtype_mask, tf.float32) +# ret = tf.multiply(x, xdtype_mask) +# float32_mask_size = tf.cast(tf.size(fp32_mask), tf.float32) +# float32_mask_reduce_sum = tf.reduce_sum(fp32_mask) +# normalize_factor = tf.cast(float32_mask_size / (float32_mask_reduce_sum + 1e-8), x.dtype) +# ret = ret * normalize_factor +# return ret + + +def drop_block_2d(x, drop_prob=0.1, block_size=7, gamma_scale=1.0, drop_with_noise=False): + _, _, height, width = x.shape + total_size = width * height + clipped_block_size = min(block_size, min(width, height)) + # seed_drop_rate, the gamma parameter + seed_drop_rate = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( + (width - block_size + 1) * + (height - block_size + 1)) + + # Forces the block to be inside the feature map. + w_i, h_i = torch.meshgrid(torch.arange(width), torch.arange(height)) + valid_block = ((w_i >= clipped_block_size // 2) & (w_i < width - (clipped_block_size - 1) // 2)) & \ + ((h_i >= clipped_block_size // 2) & (h_i < height - (clipped_block_size - 1) // 2)) + valid_block = torch.reshape(valid_block, (1, 1, height, width)) + valid_block = valid_block.to(x.dtype) + + uniform_noise = torch.rand_like(x) + block_mask = ((2 - seed_drop_rate - valid_block + uniform_noise) >= 1).to(x.dtype) + block_mask = -F.max_pool2d( + -block_mask, + kernel_size=clipped_block_size, # block_size, + stride=1, + padding=clipped_block_size // 2) + + if drop_with_noise: + normal_noise = torch.randn_like(x) + x = x * block_mask + normal_noise * (1 - block_mask) + else: + normalize_scale = block_mask.numel() / (torch.sum(block_mask, dtype=torch.float32) + 1e-7) + x = x * block_mask * normalize_scale + return x + + +class DropBlock2d(nn.Module): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + """ + def __init__(self, + drop_prob=0.1, + block_size=7, + gamma_scale=1.0, + with_noise=False): + super(DropBlock2d, self).__init__() + self.drop_prob = drop_prob + self.gamma_scale = gamma_scale + self.block_size = block_size + self.with_noise = with_noise + + def forward(self, x): + if not self.training or not self.drop_prob: + return x + return drop_block_2d(x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise) + + +def drop_path(x, drop_prob=0.): + """Drop paths (Stochastic Depth) per sample (when applied in residual blocks).""" + keep_prob = 1 - drop_prob + random_tensor = keep_prob + torch.rand((x.size()[0], 1, 1, 1), dtype=x.dtype, device=x.device) + random_tensor.floor_() # binarize + output = x.div(keep_prob) * random_tensor + return output + + +class DropPath(nn.ModuleDict): + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + if not self.training or not self.drop_prob: + return x + return drop_path(x, self.drop_prob)