Fix accuracy when topk > num_classes

pull/817/head
Yohann Lereclus 3 years ago
parent a16a753852
commit 35c9740826

@ -2,6 +2,7 @@
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
class AverageMeter:
@ -24,9 +25,12 @@ class AverageMeter:
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
maxk = max(topk)
maxk = min(max(topk), output.size()[1])
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
return [correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk]
return [
correct[:k].reshape(-1).float().sum(0) * 100. / batch_size
if k <= maxk else torch.tensor(100.) for k in topk
]

Loading…
Cancel
Save