📝 wip docs

pull/1575/head
nateraw 3 years ago
parent 7114867fc8
commit 2f9f40130b

@ -22,7 +22,7 @@ Here, we load the pretrained `mobilenetv3_large_100` model.
```
<Tip>
**Note:** The returned PyTorch model is set to `train` mode by default, so you must call `.eval()` on it if you plan to use it for inference.
Note: The returned PyTorch model is set to train mode by default, so you must call .eval() on it if you plan to use it for inference.
</Tip>
## List Models with Pretrained Weights
@ -92,7 +92,7 @@ torch.Size([1, 960, 7, 7])
## Image Augmentation
To transform images into valid inputs for a model, you can use `timm.data.create_transform`, providing the desired `input_size` that the model expects.
To transform images into valid inputs for a model, you can use [`timm.data.create_transform`], providing the desired `input_size` that the model expects.
This will return a generic transform that uses reasonable defaults.
@ -125,7 +125,7 @@ To figure out which transformations were used for a given pretrained model, we c
'architecture': 'mobilenetv3_large_100'}
```
We can then resolve only the data related configuration by using `timm.data.resolve_data_config`.
We can then resolve only the data related configuration by using [`timm.data.resolve_data_config`].
```py
>>> timm.data.resolve_data_config(model.pretrained_cfg)

@ -5,3 +5,5 @@
[[autodoc]] timm.data.create_loader
[[autodoc]] timm.data.create_transform
[[autodoc]] timm.data.resolve_data_config
Loading…
Cancel
Save