diff --git a/timm/models/resnest.py b/timm/models/resnest.py index e4f0157b..b68162d7 100644 --- a/timm/models/resnest.py +++ b/timm/models/resnest.py @@ -1,8 +1,8 @@ """ ResNeSt Models -Paper: `ResNeSt: Split-Attention Networks` - /https://arxiv.org/abs/2004.08955 +Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 -Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt +Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang Modified for torchscript compat, and consistency with timm by Ross Wightman """ @@ -31,8 +31,10 @@ def _cfg(url='', **kwargs): } default_cfgs = { + 'resnest14d': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'), 'resnest26d': _cfg( - url=''), + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'), 'resnest50d': _cfg( url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50-528c19ca.pth'), 'resnest101e': _cfg( @@ -41,6 +43,12 @@ default_cfgs = { url='https://hangzh.s3.amazonaws.com/encoding/models/resnest200-75117900.pth', input_size=(3, 320, 320)), 'resnest269e': _cfg( url='https://hangzh.s3.amazonaws.com/encoding/models/resnest269-0cc87c48.pth', input_size=(3, 416, 416)), + 'resnest50d_4s2x40d': _cfg( + url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_4s2x40d-41d14ed0.pth', + interpolation='bicubic'), + 'resnest50d_1s4x24d': _cfg( + url='https://hangzh.s3.amazonaws.com/encoding/models/resnest50_fast_1s4x24d-d4a4f76f.pth', + interpolation='bicubic') } @@ -78,7 +86,7 @@ class ResNestBottleneck(nn.Module): if self.radix >= 1: self.conv2 = SplitAttnConv2d( group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, - dilation=first_dilation, groups=cardinality, norm_layer=norm_layer, drop_block=drop_block) + dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_block=drop_block) self.bn2 = None # FIXME revisit, here to satisfy current torchscript fussyness self.drop_block2 = None self.act2 = None @@ -135,9 +143,24 @@ class ResNestBottleneck(nn.Module): return out +@register_model +def resnest14d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """ ResNeSt-14d model. Weights ported from GluonCV. + """ + default_cfg = default_cfgs['resnest14d'] + model = ResNet( + ResNestBottleneck, [1, 1, 1, 1], num_classes=num_classes, in_chans=in_chans, + stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model + + @register_model def resnest26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): - """ ResNeSt-26d model. + """ ResNeSt-26d model. Weights ported from GluonCV. """ default_cfg = default_cfgs['resnest26d'] model = ResNet( @@ -212,3 +235,16 @@ def resnest269e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model + + +@register_model +def resnest50d_1s4x24d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + default_cfg = default_cfgs['resnest50d_1s4x24d'] + model = ResNet( + ResNestBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, + stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, + block_args=dict(radix=1, avd=True, avd_first=True), **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model