diff --git a/timm/models/helpers.py b/timm/models/helpers.py index 3183f631..3baad3bf 100644 --- a/timm/models/helpers.py +++ b/timm/models/helpers.py @@ -31,9 +31,9 @@ def load_state_dict(checkpoint_path, use_ema=False): raise FileNotFoundError() -def load_checkpoint(model, checkpoint_path, use_ema=False): +def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True): state_dict = load_state_dict(checkpoint_path, use_ema) - model.load_state_dict(state_dict) + model.load_state_dict(state_dict, strict=strict) def resume_checkpoint(model, checkpoint_path): diff --git a/timm/models/layers/__init__.py b/timm/models/layers/__init__.py index 568a9e11..4f84bb9e 100644 --- a/timm/models/layers/__init__.py +++ b/timm/models/layers/__init__.py @@ -17,4 +17,5 @@ from .drop import DropBlock2d, DropPath, drop_block_2d, drop_path from .test_time_pool import TestTimePoolHead, apply_test_time_pool from .split_batchnorm import SplitBatchNorm2d, convert_splitbn_model from .anti_aliasing import AntiAliasDownsampleLayer -from .space_to_depth import SpaceToDepthModule \ No newline at end of file +from .space_to_depth import SpaceToDepthModule +from .blur_pool import BlurPool2d diff --git a/timm/models/layers/anti_aliasing.py b/timm/models/layers/anti_aliasing.py index 38f96ee3..9d3837e8 100644 --- a/timm/models/layers/anti_aliasing.py +++ b/timm/models/layers/anti_aliasing.py @@ -5,12 +5,12 @@ import torch.nn.functional as F class AntiAliasDownsampleLayer(nn.Module): - def __init__(self, no_jit: bool = False, filt_size: int = 3, stride: int = 2, channels: int = 0): + def __init__(self, channels: int = 0, filt_size: int = 3, stride: int = 2, no_jit: bool = False): super(AntiAliasDownsampleLayer, self).__init__() if no_jit: - self.op = Downsample(filt_size, stride, channels) + self.op = Downsample(channels, filt_size, stride) else: - self.op = DownsampleJIT(filt_size, stride, channels) + self.op = DownsampleJIT(channels, filt_size, stride) # FIXME I should probably override _apply and clear DownsampleJIT filter cache for .cuda(), .half(), etc calls @@ -20,10 +20,10 @@ class AntiAliasDownsampleLayer(nn.Module): @torch.jit.script class DownsampleJIT(object): - def __init__(self, filt_size: int = 3, stride: int = 2, channels: int = 0): + def __init__(self, channels: int = 0, filt_size: int = 3, stride: int = 2): + self.channels = channels self.stride = stride self.filt_size = filt_size - self.channels = channels assert self.filt_size == 3 assert stride == 2 self.filt = {} # lazy init by device for DataParallel compat @@ -32,8 +32,7 @@ class DownsampleJIT(object): filt = torch.tensor([1., 2., 1.], dtype=like.dtype, device=like.device) filt = filt[:, None] * filt[None, :] filt = filt / torch.sum(filt) - filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1)) - return filt + return filt[None, None, :, :].repeat((self.channels, 1, 1, 1)) def __call__(self, input: torch.Tensor): input_pad = F.pad(input, (1, 1, 1, 1), 'reflect') @@ -42,11 +41,11 @@ class DownsampleJIT(object): class Downsample(nn.Module): - def __init__(self, filt_size=3, stride=2, channels=None): + def __init__(self, channels=None, filt_size=3, stride=2): super(Downsample, self).__init__() + self.channels = channels self.filt_size = filt_size self.stride = stride - self.channels = channels assert self.filt_size == 3 filt = torch.tensor([1., 2., 1.]) diff --git a/timm/models/layers/blur_pool.py b/timm/models/layers/blur_pool.py new file mode 100644 index 00000000..399cbe35 --- /dev/null +++ b/timm/models/layers/blur_pool.py @@ -0,0 +1,58 @@ +""" +BlurPool layer inspired by + - Kornia's Max_BlurPool2d + - Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` + +FIXME merge this impl with those in `anti_aliasing.py` + +Hacked together by Chris Ha and Ross Wightman +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np +from typing import Dict +from .padding import get_padding + + +class BlurPool2d(nn.Module): + r"""Creates a module that computes blurs and downsample a given feature map. + See :cite:`zhang2019shiftinvar` for more details. + Corresponds to the Downsample class, which does blurring and subsampling + + Args: + channels = Number of input channels + filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. + stride (int): downsampling filter stride + + Returns: + torch.Tensor: the transformed tensor. + """ + filt: Dict[str, torch.Tensor] + + def __init__(self, channels, filt_size=3, stride=2) -> None: + super(BlurPool2d, self).__init__() + assert filt_size > 1 + self.channels = channels + self.filt_size = filt_size + self.stride = stride + pad_size = [get_padding(filt_size, stride, dilation=1)] * 4 + self.padding = nn.ReflectionPad2d(pad_size) + self._coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs) # for torchscript compat + self.filt = {} # lazy init by device for DataParallel compat + + def _create_filter(self, like: torch.Tensor): + blur_filter = (self._coeffs[:, None] * self._coeffs[None, :]).to(dtype=like.dtype, device=like.device) + return blur_filter[None, None, :, :].repeat(self.channels, 1, 1, 1) + + def _apply(self, fn): + # override nn.Module _apply, reset filter cache if used + self.filt = {} + super(BlurPool2d, self)._apply(fn) + + def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: + C = input_tensor.shape[1] + blur_filt = self.filt.get(str(input_tensor.device), self._create_filter(input_tensor)) + return F.conv2d( + self.padding(input_tensor), blur_filt, stride=self.stride, groups=C) diff --git a/timm/models/resnet.py b/timm/models/resnet.py index 7080ac47..4e865705 100644 --- a/timm/models/resnet.py +++ b/timm/models/resnet.py @@ -12,7 +12,7 @@ import torch.nn.functional as F from .registry import register_model from .helpers import load_pretrained, adapt_model_from_file -from .layers import SelectAdaptivePool2d, DropBlock2d, DropPath, AvgPool2dSame, create_attn +from .layers import SelectAdaptivePool2d, DropBlock2d, DropPath, AvgPool2dSame, create_attn, BlurPool2d from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD __all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] # model_registry will add each entrypoint fn to this @@ -118,6 +118,11 @@ default_cfgs = { 'ecaresnet101d_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth', interpolation='bicubic'), + 'resnetblur18': _cfg( + interpolation='bicubic'), + 'resnetblur50': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth', + interpolation='bicubic') } @@ -131,7 +136,7 @@ class BasicBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, - attn_layer=None, drop_block=None, drop_path=None): + attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): super(BasicBlock, self).__init__() assert cardinality == 1, 'BasicBlock only supports cardinality of 1' @@ -139,12 +144,15 @@ class BasicBlock(nn.Module): first_planes = planes // reduce_first outplanes = planes * self.expansion first_dilation = first_dilation or dilation + use_aa = aa_layer is not None self.conv1 = nn.Conv2d( - inplanes, first_planes, kernel_size=3, stride=stride, padding=first_dilation, + inplanes, first_planes, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, dilation=first_dilation, bias=False) self.bn1 = norm_layer(first_planes) self.act1 = act_layer(inplace=True) + self.aa = aa_layer(channels=first_planes) if stride == 2 and use_aa else None + self.conv2 = nn.Conv2d( first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False) self.bn2 = norm_layer(outplanes) @@ -169,6 +177,8 @@ class BasicBlock(nn.Module): if self.drop_block is not None: x = self.drop_block(x) x = self.act1(x) + if self.aa is not None: + x = self.aa(x) x = self.conv2(x) x = self.bn2(x) @@ -195,22 +205,26 @@ class Bottleneck(nn.Module): def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, - attn_layer=None, drop_block=None, drop_path=None): + attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): super(Bottleneck, self).__init__() width = int(math.floor(planes * (base_width / 64)) * cardinality) first_planes = width // reduce_first outplanes = planes * self.expansion first_dilation = first_dilation or dilation + use_aa = aa_layer is not None self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False) self.bn1 = norm_layer(first_planes) self.act1 = act_layer(inplace=True) + self.conv2 = nn.Conv2d( - first_planes, width, kernel_size=3, stride=stride, + first_planes, width, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) self.bn2 = norm_layer(width) self.act2 = act_layer(inplace=True) + self.aa = aa_layer(channels=width) if stride == 2 and use_aa else None + self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) self.bn3 = norm_layer(outplanes) @@ -240,6 +254,8 @@ class Bottleneck(nn.Module): if self.drop_block is not None: x = self.drop_block(x) x = self.act2(x) + if self.aa is not None: + x = self.aa(x) x = self.conv3(x) x = self.bn3(x) @@ -353,8 +369,9 @@ class ResNet(nn.Module): Whether to use average pooling for projection skip connection between stages/downsample. output_stride : int, default 32 Set the output stride of the network, 32, 16, or 8. Typically used in segmentation. - act_layer : class, activation layer - norm_layer : class, normalization layer + act_layer : nn.Module, activation layer + norm_layer : nn.Module, normalization layer + aa_layer : nn.Module, anti-aliasing layer drop_rate : float, default 0. Dropout probability before classifier, for training global_pool : str, default 'avg' @@ -363,7 +380,7 @@ class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, in_chans=3, cardinality=1, base_width=64, stem_width=64, stem_type='', block_reduce_first=1, down_kernel_size=1, avg_down=False, output_stride=32, - act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_rate=0.0, drop_path_rate=0., + act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0., drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None): block_args = block_args or dict() self.num_classes = num_classes @@ -393,7 +410,14 @@ class ResNet(nn.Module): self.conv1 = nn.Conv2d(in_chans, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.act1 = act_layer(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + # Stem Pooling + if aa_layer is not None: + self.maxpool = nn.Sequential(*[ + nn.MaxPool2d(kernel_size=3, stride=1, padding=1), + aa_layer(channels=self.inplanes, stride=2) + ]) + else: + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Feature Blocks dp = DropPath(drop_path_rate) if drop_path_rate else None @@ -410,7 +434,7 @@ class ResNet(nn.Module): assert output_stride == 32 layer_args = list(zip(channels, layers, strides, dilations)) layer_kwargs = dict( - reduce_first=block_reduce_first, act_layer=act_layer, norm_layer=norm_layer, + reduce_first=block_reduce_first, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, avg_down=avg_down, down_kernel_size=down_kernel_size, drop_path=dp, **block_args) self.layer1 = self._make_layer(block, *layer_args[0], **layer_kwargs) self.layer2 = self._make_layer(block, *layer_args[1], **layer_kwargs) @@ -1114,3 +1138,29 @@ def ecaresnet101d_pruned(pretrained=False, num_classes=1000, in_chans=3, **kwarg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model + + +@register_model +def resnetblur18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a ResNet-18 model with blur anti-aliasing + """ + default_cfg = default_cfgs['resnetblur18'] + model = ResNet( + BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, aa_layer=BlurPool2d, **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model + + +@register_model +def resnetblur50(pretrained=False, num_classes=1000, in_chans=3, **kwargs): + """Constructs a ResNet-50 model with blur anti-aliasing + """ + default_cfg = default_cfgs['resnetblur50'] + model = ResNet( + Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, aa_layer=BlurPool2d, **kwargs) + model.default_cfg = default_cfg + if pretrained: + load_pretrained(model, default_cfg, num_classes, in_chans) + return model