From 2680ad14bbdfd6a52d5c451c9c55ae4934e6dd04 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Wed, 4 Sep 2019 17:38:59 -0700 Subject: [PATCH] Add Res2Net and DLA to README --- README.md | 4 ++++ timm/models/res2net.py | 11 ----------- 2 files changed, 4 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 66cea1d5..f622f51f 100644 --- a/README.md +++ b/README.md @@ -25,6 +25,10 @@ I've included a few of my favourite models, but this is not an exhaustive collec * ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNeXt50 (32x4d), ResNeXt101 (32x4d and 64x4d) * 'Bag of Tricks' / Gluon C, D, E, S variations (https://arxiv.org/abs/1812.01187) * Instagram trained / ImageNet tuned ResNeXt101-32x8d to 32x48d from from [facebookresearch](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/) + * Res2Net (https://github.com/gasvn/Res2Net, https://arxiv.org/abs/1904.01169) +* DLA + * Original (https://github.com/ucbdrive/dla, https://arxiv.org/abs/1707.06484) + * Res2Net (https://github.com/gasvn/Res2Net, https://arxiv.org/abs/1904.01169) * DenseNet (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models)) * DenseNet-121, DenseNet-169, DenseNet-201, DenseNet-161 * Squeeze-and-Excitation ResNet/ResNeXt (from [Cadene](https://github.com/Cadene/pretrained-models.pytorch) with some pretrained weight additions by myself) diff --git a/timm/models/res2net.py b/timm/models/res2net.py index c2fd3f3b..30dffc1a 100644 --- a/timm/models/res2net.py +++ b/timm/models/res2net.py @@ -119,17 +119,6 @@ class Bottle2neck(nn.Module): return out - -@register_model -def res2net50(pretrained=False, num_classes=1000, in_chans=3, **kwargs): - """Constructs a Res2Net-50 model. - Res2Net-50 refers to the Res2Net-50_26w_4s. - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - return res2net50_26w_4s(pretrained, num_classes, in_chans, **kwargs) - - @register_model def res2net50_26w_4s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a Res2Net-50_26w_4s model.