diff --git a/timm/models/resnet.py b/timm/models/resnet.py index 7ba69d11..f417ef89 100644 --- a/timm/models/resnet.py +++ b/timm/models/resnet.py @@ -492,7 +492,7 @@ class ResNet(nn.Module): This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the 'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default. - + ResNet variants (the same modifications can be used in SE/ResNeXt models as well): * normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet 'v1.5', Gluon v1b * c - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64) @@ -501,18 +501,18 @@ class ResNet(nn.Module): * s - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128) * t - 3 layer deep 3x3 stem, stem width = 32 (24, 48, 64), average pool in downsample * tn - 3 layer deep 3x3 stem, stem width = 32 (24, 32, 64), average pool in downsample - + ResNeXt * normal - 7x7 stem, stem_width = 64, standard cardinality and base widths * same c,d, e, s variants as ResNet can be enabled - + SE-ResNeXt * normal - 7x7 stem, stem_width = 64 * same c, d, e, s variants as ResNet can be enabled - + SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64, reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block - + Parameters ---------- block : Block