diff --git a/tests/test_models.py b/tests/test_models.py index 6f9dc2d5..dcc9ab89 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -116,8 +116,8 @@ def test_model_default_cfgs(model_name, batch_size): model.reset_classifier(0, '') # reset classifier and set global pooling to pass-through outputs = model.forward(input_tensor) assert len(outputs.shape) == 4 - if not isinstance(model, timm.models.MobileNetV3): - # FIXME mobilenetv3 forward_features vs removed pooling differ + if not isinstance(model, timm.models.MobileNetV3) and not isinstance(model, timm.models.GhostNet): + # FIXME mobilenetv3/ghostnet forward_features vs removed pooling differ assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2] # check classifier name matches default_cfg @@ -150,7 +150,7 @@ if 'GITHUB_ACTIONS' not in os.environ: EXCLUDE_JIT_FILTERS = [ '*iabn*', 'tresnet*', # models using inplace abn unlikely to ever be scriptable - 'dla*', 'hrnet*', # hopefully fix at some point + 'dla*', 'hrnet*', 'ghostnet*', # hopefully fix at some point ] diff --git a/timm/models/__init__.py b/timm/models/__init__.py index 862ca0f2..16ced3da 100644 --- a/timm/models/__init__.py +++ b/timm/models/__init__.py @@ -5,6 +5,7 @@ from .densenet import * from .dla import * from .dpn import * from .efficientnet import * +from .ghostnet import * from .gluon_resnet import * from .gluon_xception import * from .hardcorenas import * diff --git a/timm/models/ghostnet.py b/timm/models/ghostnet.py new file mode 100644 index 00000000..76761d1c --- /dev/null +++ b/timm/models/ghostnet.py @@ -0,0 +1,276 @@ +""" +An implementation of GhostNet Model as defined in: +GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 +The train script of the model is similar to that of MobileNetV3 +Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch +""" +import math +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from .layers import SelectAdaptivePool2d, Linear, hard_sigmoid +from .efficientnet_blocks import SqueezeExcite, ConvBnAct, make_divisible +from .helpers import build_model_with_cfg +from .registry import register_model + + +__all__ = ['GhostNet'] + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv_stem', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = { + 'ghostnet_050': _cfg(url=''), + 'ghostnet_100': _cfg( + url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'), + 'ghostnet_130': _cfg(url=''), +} + + +_SE_LAYER = partial(SqueezeExcite, gate_fn=hard_sigmoid, divisor=4) + + +class GhostModule(nn.Module): + def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): + super(GhostModule, self).__init__() + self.oup = oup + init_channels = math.ceil(oup / ratio) + new_channels = init_channels * (ratio - 1) + + self.primary_conv = nn.Sequential( + nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), + nn.BatchNorm2d(init_channels), + nn.ReLU(inplace=True) if relu else nn.Sequential(), + ) + + self.cheap_operation = nn.Sequential( + nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), + nn.BatchNorm2d(new_channels), + nn.ReLU(inplace=True) if relu else nn.Sequential(), + ) + + def forward(self, x): + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + out = torch.cat([x1, x2], dim=1) + return out[:, :self.oup, :, :] + + +class GhostBottleneck(nn.Module): + """ Ghost bottleneck w/ optional SE""" + + def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, + stride=1, act_layer=nn.ReLU, se_ratio=0.): + super(GhostBottleneck, self).__init__() + has_se = se_ratio is not None and se_ratio > 0. + self.stride = stride + + # Point-wise expansion + self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) + + # Depth-wise convolution + if self.stride > 1: + self.conv_dw = nn.Conv2d( + mid_chs, mid_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) + self.bn_dw = nn.BatchNorm2d(mid_chs) + else: + self.conv_dw = None + self.bn_dw = None + + # Squeeze-and-excitation + self.se = _SE_LAYER(mid_chs, se_ratio=se_ratio) if has_se else None + + # Point-wise linear projection + self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) + + # shortcut + if in_chs == out_chs and self.stride == 1: + self.shortcut = nn.Sequential() + else: + self.shortcut = nn.Sequential( + nn.Conv2d( + in_chs, in_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), + nn.BatchNorm2d(in_chs), + nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(out_chs), + ) + + + def forward(self, x): + residual = x + + # 1st ghost bottleneck + x = self.ghost1(x) + + # Depth-wise convolution + if self.conv_dw is not None: + x = self.conv_dw(x) + x = self.bn_dw(x) + + # Squeeze-and-excitation + if self.se is not None: + x = self.se(x) + + # 2nd ghost bottleneck + x = self.ghost2(x) + + x += self.shortcut(residual) + return x + + +class GhostNet(nn.Module): + def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, in_chans=3, output_stride=32): + super(GhostNet, self).__init__() + # setting of inverted residual blocks + assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' + self.cfgs = cfgs + self.num_classes = num_classes + self.dropout = dropout + self.feature_info = [] + + # building first layer + stem_chs = make_divisible(16 * width, 4) + self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) + self.bn1 = nn.BatchNorm2d(stem_chs) + self.act1 = nn.ReLU(inplace=True) + prev_chs = stem_chs + + # building inverted residual blocks + stages = nn.ModuleList([]) + block = GhostBottleneck + stage_idx = 0 + net_stride = 2 + for cfg in self.cfgs: + layers = [] + s = 1 + for k, exp_size, c, se_ratio, s in cfg: + out_chs = make_divisible(c * width, 4) + mid_chs = make_divisible(exp_size * width, 4) + layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio)) + prev_chs = out_chs + if s > 1: + net_stride *= 2 + self.feature_info.append(dict( + num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) + stages.append(nn.Sequential(*layers)) + stage_idx += 1 + + out_chs = make_divisible(exp_size * width, 4) + stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) + self.pool_dim = prev_chs = out_chs + + self.blocks = nn.Sequential(*stages) + + # building last several layers + self.num_features = out_chs = 1280 + self.global_pool = SelectAdaptivePool2d(pool_type='avg') + self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) + self.act2 = nn.ReLU(inplace=True) + self.classifier = Linear(out_chs, num_classes) + + def get_classifier(self): + return self.classifier + + def reset_classifier(self, num_classes, global_pool='avg'): + self.num_classes = num_classes + # cannot meaningfully change pooling of efficient head after creation + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.classifier = Linear(self.pool_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + x = self.blocks(x) + x = self.global_pool(x) + x = self.conv_head(x) + x = self.act2(x) + return x + + def forward(self, x): + x = self.forward_features(x) + if not self.global_pool.is_identity(): + x = x.view(x.size(0), -1) + if self.dropout > 0.: + x = F.dropout(x, p=self.dropout, training=self.training) + x = self.classifier(x) + return x + + +def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): + """ + Constructs a GhostNet model + """ + cfgs = [ + # k, t, c, SE, s + # stage1 + [[3, 16, 16, 0, 1]], + # stage2 + [[3, 48, 24, 0, 2]], + [[3, 72, 24, 0, 1]], + # stage3 + [[5, 72, 40, 0.25, 2]], + [[5, 120, 40, 0.25, 1]], + # stage4 + [[3, 240, 80, 0, 2]], + [[3, 200, 80, 0, 1], + [3, 184, 80, 0, 1], + [3, 184, 80, 0, 1], + [3, 480, 112, 0.25, 1], + [3, 672, 112, 0.25, 1] + ], + # stage5 + [[5, 672, 160, 0.25, 2]], + [[5, 960, 160, 0, 1], + [5, 960, 160, 0.25, 1], + [5, 960, 160, 0, 1], + [5, 960, 160, 0.25, 1] + ] + ] + model_kwargs = dict( + cfgs=cfgs, + width=width, + **kwargs, + ) + return build_model_with_cfg( + GhostNet, variant, pretrained, + default_cfg=default_cfgs[variant], + feature_cfg=dict(flatten_sequential=True), + **model_kwargs) + + +@register_model +def ghostnet_050(pretrained=False, **kwargs): + """ GhostNet-0.5x """ + model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def ghostnet_100(pretrained=False, **kwargs): + """ GhostNet-1.0x """ + model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def ghostnet_130(pretrained=False, **kwargs): + """ GhostNet-1.3x """ + model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) + return model