From 19c9d11fcf1a7cd17ffa5bdcf37a820850e439ed Mon Sep 17 00:00:00 2001 From: Fredo Guan Date: Sat, 10 Dec 2022 21:27:19 -0800 Subject: [PATCH] Update davit.py --- timm/models/davit.py | 55 -------------------------------------------- 1 file changed, 55 deletions(-) diff --git a/timm/models/davit.py b/timm/models/davit.py index ff3442d6..cc924aa4 100644 --- a/timm/models/davit.py +++ b/timm/models/davit.py @@ -66,61 +66,6 @@ class ConvPosEnc(nn.Module): feat = feat.flatten(2).transpose(1, 2) x = x + self.activation(feat).transpose(1, 2).view(B, C, H, W) return x - - -@register_notrace_module -class PatchEmbedOld(nn.Module): - """ Size-agnostic implementation of 2D image to patch embedding, - allowing input size to be adjusted during model forward operation - """ - - def __init__( - self, - patch_size=4, - in_chans=3, - embed_dim=96, - overlapped=False): - super().__init__() - patch_size = to_2tuple(patch_size) - self.patch_size = patch_size - self.in_chans = in_chans - self.embed_dim = embed_dim - - if patch_size[0] == 4: - self.proj = nn.Conv2d( - in_chans, - embed_dim, - kernel_size=(7, 7), - stride=patch_size, - padding=(3, 3)) - self.norm = nn.LayerNorm(embed_dim) - if patch_size[0] == 2: - kernel = 3 if overlapped else 2 - pad = 1 if overlapped else 0 - self.proj = nn.Conv2d( - in_chans, - embed_dim, - kernel_size=to_2tuple(kernel), - stride=patch_size, - padding=to_2tuple(pad)) - self.norm = nn.LayerNorm(in_chans) - - - def forward(self, x : Tensor): - B, C, H, W = x.shape - if self.norm.normalized_shape[0] == self.in_chans: - x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) - - if W % self.patch_size[1] != 0: - x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) - if H % self.patch_size[0] != 0: - x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) - - x = self.proj(x) - - if self.norm.normalized_shape[0] == self.embed_dim: - x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) - return x class PatchEmbed(nn.Module):