|
|
|
@ -14,7 +14,6 @@ NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
|
|
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
|
|
|
|
|
"""
|
|
|
|
|
import argparse
|
|
|
|
|
import time
|
|
|
|
|
import yaml
|
|
|
|
|
import os
|
|
|
|
@ -22,6 +21,10 @@ import logging
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
from contextlib import suppress
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
from fire import Fire
|
|
|
|
|
from addict import Dict
|
|
|
|
|
import numpy as np
|
|
|
|
|
import random
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
@ -54,229 +57,54 @@ except AttributeError:
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
_logger = logging.getLogger('train')
|
|
|
|
|
|
|
|
|
|
# The first arg parser parses out only the --config argument, this argument is used to
|
|
|
|
|
# load a yaml file containing key-values that override the defaults for the main parser below
|
|
|
|
|
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
|
|
|
|
|
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
|
|
|
|
|
help='YAML config file specifying default arguments')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
|
|
|
|
|
|
|
|
|
|
# Dataset / Model parameters
|
|
|
|
|
parser.add_argument('data', metavar='DIR',
|
|
|
|
|
help='path to dataset')
|
|
|
|
|
parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL',
|
|
|
|
|
help='Name of model to train (default: "countception"')
|
|
|
|
|
parser.add_argument('--pretrained', action='store_true', default=False,
|
|
|
|
|
help='Start with pretrained version of specified network (if avail)')
|
|
|
|
|
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
|
|
|
|
|
help='Initialize model from this checkpoint (default: none)')
|
|
|
|
|
parser.add_argument('--resume', default='', type=str, metavar='PATH',
|
|
|
|
|
help='Resume full model and optimizer state from checkpoint (default: none)')
|
|
|
|
|
parser.add_argument('--no-resume-opt', action='store_true', default=False,
|
|
|
|
|
help='prevent resume of optimizer state when resuming model')
|
|
|
|
|
parser.add_argument('--num-classes', type=int, default=1000, metavar='N',
|
|
|
|
|
help='number of label classes (default: 1000)')
|
|
|
|
|
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
|
|
|
|
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
|
|
|
|
|
parser.add_argument('--img-size', type=int, default=None, metavar='N',
|
|
|
|
|
help='Image patch size (default: None => model default)')
|
|
|
|
|
parser.add_argument('--crop-pct', default=None, type=float,
|
|
|
|
|
metavar='N', help='Input image center crop percent (for validation only)')
|
|
|
|
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
|
|
|
|
|
help='Override mean pixel value of dataset')
|
|
|
|
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
|
|
|
|
|
help='Override std deviation of of dataset')
|
|
|
|
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
|
|
|
|
help='Image resize interpolation type (overrides model)')
|
|
|
|
|
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
|
|
|
|
|
help='input batch size for training (default: 32)')
|
|
|
|
|
parser.add_argument('-vb', '--validation-batch-size-multiplier', type=int, default=1, metavar='N',
|
|
|
|
|
help='ratio of validation batch size to training batch size (default: 1)')
|
|
|
|
|
|
|
|
|
|
# Optimizer parameters
|
|
|
|
|
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
|
|
|
|
|
help='Optimizer (default: "sgd"')
|
|
|
|
|
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
|
|
|
|
|
help='Optimizer Epsilon (default: None, use opt default)')
|
|
|
|
|
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
|
|
|
|
|
help='Optimizer Betas (default: None, use opt default)')
|
|
|
|
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
|
|
|
|
help='Optimizer momentum (default: 0.9)')
|
|
|
|
|
parser.add_argument('--weight-decay', type=float, default=0.0001,
|
|
|
|
|
help='weight decay (default: 0.0001)')
|
|
|
|
|
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
|
|
|
|
|
help='Clip gradient norm (default: None, no clipping)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Learning rate schedule parameters
|
|
|
|
|
parser.add_argument('--sched', default='step', type=str, metavar='SCHEDULER',
|
|
|
|
|
help='LR scheduler (default: "step"')
|
|
|
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
|
|
|
help='learning rate (default: 0.01)')
|
|
|
|
|
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
|
|
|
|
|
help='learning rate noise on/off epoch percentages')
|
|
|
|
|
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
|
|
|
|
|
help='learning rate noise limit percent (default: 0.67)')
|
|
|
|
|
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
|
|
|
|
|
help='learning rate noise std-dev (default: 1.0)')
|
|
|
|
|
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
|
|
|
|
|
help='learning rate cycle len multiplier (default: 1.0)')
|
|
|
|
|
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
|
|
|
|
|
help='learning rate cycle limit')
|
|
|
|
|
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
|
|
|
|
|
help='warmup learning rate (default: 0.0001)')
|
|
|
|
|
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
|
|
|
|
|
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
|
|
|
|
|
parser.add_argument('--epochs', type=int, default=200, metavar='N',
|
|
|
|
|
help='number of epochs to train (default: 2)')
|
|
|
|
|
parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
|
|
|
|
|
help='manual epoch number (useful on restarts)')
|
|
|
|
|
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
|
|
|
|
|
help='epoch interval to decay LR')
|
|
|
|
|
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
|
|
|
|
|
help='epochs to warmup LR, if scheduler supports')
|
|
|
|
|
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
|
|
|
|
|
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
|
|
|
|
|
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
|
|
|
|
|
help='patience epochs for Plateau LR scheduler (default: 10')
|
|
|
|
|
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
|
|
|
|
|
help='LR decay rate (default: 0.1)')
|
|
|
|
|
|
|
|
|
|
# Augmentation & regularization parameters
|
|
|
|
|
parser.add_argument('--no-aug', action='store_true', default=False,
|
|
|
|
|
help='Disable all training augmentation, override other train aug args')
|
|
|
|
|
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
|
|
|
|
|
help='Random resize scale (default: 0.08 1.0)')
|
|
|
|
|
parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
|
|
|
|
|
help='Random resize aspect ratio (default: 0.75 1.33)')
|
|
|
|
|
parser.add_argument('--hflip', type=float, default=0.5,
|
|
|
|
|
help='Horizontal flip training aug probability')
|
|
|
|
|
parser.add_argument('--vflip', type=float, default=0.,
|
|
|
|
|
help='Vertical flip training aug probability')
|
|
|
|
|
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
|
|
|
|
|
help='Color jitter factor (default: 0.4)')
|
|
|
|
|
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
|
|
|
|
|
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
|
|
|
|
|
parser.add_argument('--aug-splits', type=int, default=0,
|
|
|
|
|
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
|
|
|
|
|
parser.add_argument('--jsd', action='store_true', default=False,
|
|
|
|
|
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
|
|
|
|
|
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
|
|
|
|
|
help='Random erase prob (default: 0.)')
|
|
|
|
|
parser.add_argument('--remode', type=str, default='const',
|
|
|
|
|
help='Random erase mode (default: "const")')
|
|
|
|
|
parser.add_argument('--recount', type=int, default=1,
|
|
|
|
|
help='Random erase count (default: 1)')
|
|
|
|
|
parser.add_argument('--resplit', action='store_true', default=False,
|
|
|
|
|
help='Do not random erase first (clean) augmentation split')
|
|
|
|
|
parser.add_argument('--mixup', type=float, default=0.0,
|
|
|
|
|
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
|
|
|
|
|
parser.add_argument('--cutmix', type=float, default=0.0,
|
|
|
|
|
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
|
|
|
|
|
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
|
|
|
|
|
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
|
|
|
|
|
parser.add_argument('--mixup-prob', type=float, default=1.0,
|
|
|
|
|
help='Probability of performing mixup or cutmix when either/both is enabled')
|
|
|
|
|
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
|
|
|
|
|
help='Probability of switching to cutmix when both mixup and cutmix enabled')
|
|
|
|
|
parser.add_argument('--mixup-mode', type=str, default='batch',
|
|
|
|
|
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
|
|
|
|
|
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
|
|
|
|
|
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
|
|
|
|
|
parser.add_argument('--smoothing', type=float, default=0.1,
|
|
|
|
|
help='Label smoothing (default: 0.1)')
|
|
|
|
|
parser.add_argument('--train-interpolation', type=str, default='random',
|
|
|
|
|
help='Training interpolation (random, bilinear, bicubic default: "random")')
|
|
|
|
|
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
|
|
|
|
|
help='Dropout rate (default: 0.)')
|
|
|
|
|
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
|
|
|
|
|
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
|
|
|
|
|
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
|
|
|
|
|
help='Drop path rate (default: None)')
|
|
|
|
|
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
|
|
|
|
|
help='Drop block rate (default: None)')
|
|
|
|
|
|
|
|
|
|
# Batch norm parameters (only works with gen_efficientnet based models currently)
|
|
|
|
|
parser.add_argument('--bn-tf', action='store_true', default=False,
|
|
|
|
|
help='Use Tensorflow BatchNorm defaults for models that support it (default: False)')
|
|
|
|
|
parser.add_argument('--bn-momentum', type=float, default=None,
|
|
|
|
|
help='BatchNorm momentum override (if not None)')
|
|
|
|
|
parser.add_argument('--bn-eps', type=float, default=None,
|
|
|
|
|
help='BatchNorm epsilon override (if not None)')
|
|
|
|
|
parser.add_argument('--sync-bn', action='store_true',
|
|
|
|
|
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
|
|
|
|
|
parser.add_argument('--dist-bn', type=str, default='',
|
|
|
|
|
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
|
|
|
|
|
parser.add_argument('--split-bn', action='store_true',
|
|
|
|
|
help='Enable separate BN layers per augmentation split.')
|
|
|
|
|
|
|
|
|
|
# Model Exponential Moving Average
|
|
|
|
|
parser.add_argument('--model-ema', action='store_true', default=False,
|
|
|
|
|
help='Enable tracking moving average of model weights')
|
|
|
|
|
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False,
|
|
|
|
|
help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
|
|
|
|
|
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
|
|
|
|
|
help='decay factor for model weights moving average (default: 0.9998)')
|
|
|
|
|
|
|
|
|
|
# Misc
|
|
|
|
|
parser.add_argument('--seed', type=int, default=42, metavar='S',
|
|
|
|
|
help='random seed (default: 42)')
|
|
|
|
|
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
|
|
|
|
|
help='how many batches to wait before logging training status')
|
|
|
|
|
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
|
|
|
|
|
help='how many batches to wait before writing recovery checkpoint')
|
|
|
|
|
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
|
|
|
|
|
help='how many training processes to use (default: 1)')
|
|
|
|
|
parser.add_argument('--num-gpu', type=int, default=1,
|
|
|
|
|
help='Number of GPUS to use')
|
|
|
|
|
parser.add_argument('--save-images', action='store_true', default=False,
|
|
|
|
|
help='save images of input bathes every log interval for debugging')
|
|
|
|
|
parser.add_argument('--amp', action='store_true', default=False,
|
|
|
|
|
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
|
|
|
|
|
parser.add_argument('--apex-amp', action='store_true', default=False,
|
|
|
|
|
help='Use NVIDIA Apex AMP mixed precision')
|
|
|
|
|
parser.add_argument('--native-amp', action='store_true', default=False,
|
|
|
|
|
help='Use Native Torch AMP mixed precision')
|
|
|
|
|
parser.add_argument('--channels-last', action='store_true', default=False,
|
|
|
|
|
help='Use channels_last memory layout')
|
|
|
|
|
parser.add_argument('--pin-mem', action='store_true', default=False,
|
|
|
|
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
|
|
|
|
parser.add_argument('--no-prefetcher', action='store_true', default=False,
|
|
|
|
|
help='disable fast prefetcher')
|
|
|
|
|
parser.add_argument('--output', default='', type=str, metavar='PATH',
|
|
|
|
|
help='path to output folder (default: none, current dir)')
|
|
|
|
|
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
|
|
|
|
|
help='Best metric (default: "top1"')
|
|
|
|
|
parser.add_argument('--tta', type=int, default=0, metavar='N',
|
|
|
|
|
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
|
|
|
|
|
parser.add_argument("--local_rank", default=0, type=int)
|
|
|
|
|
parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
|
|
|
|
|
help='use the multi-epochs-loader to save time at the beginning of every epoch')
|
|
|
|
|
|
|
|
|
|
def _update_config(config, params):
|
|
|
|
|
for k, v in params.items():
|
|
|
|
|
*path, key = k.split(".")
|
|
|
|
|
config.update({k: v})
|
|
|
|
|
print(f"Overwriting {k} = {v} (was {config.get(key)})")
|
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
|
def _parse_args():
|
|
|
|
|
# Do we have a config file to parse?
|
|
|
|
|
args_config, remaining = config_parser.parse_known_args()
|
|
|
|
|
if args_config.config:
|
|
|
|
|
with open(args_config.config, 'r') as f:
|
|
|
|
|
cfg = yaml.safe_load(f)
|
|
|
|
|
parser.set_defaults(**cfg)
|
|
|
|
|
|
|
|
|
|
# The main arg parser parses the rest of the args, the usual
|
|
|
|
|
# defaults will have been overridden if config file specified.
|
|
|
|
|
args = parser.parse_args(remaining)
|
|
|
|
|
def _fit(**kwargs):
|
|
|
|
|
with open('configs/train.yaml') as stream:
|
|
|
|
|
base_config = yaml.safe_load(stream)
|
|
|
|
|
|
|
|
|
|
if "config" in kwargs.keys():
|
|
|
|
|
cfg_path = kwargs["config"]
|
|
|
|
|
with open(cfg_path) as cfg:
|
|
|
|
|
cfg_yaml = yaml.load(cfg, Loader=yaml.FullLoader)
|
|
|
|
|
|
|
|
|
|
merged_cfg = _update_config(base_config, cfg_yaml)
|
|
|
|
|
else:
|
|
|
|
|
merged_cfg = base_config
|
|
|
|
|
|
|
|
|
|
update_cfg = _update_config(merged_cfg, kwargs)
|
|
|
|
|
return update_cfg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_args():
|
|
|
|
|
args = Dict(Fire(_fit))
|
|
|
|
|
|
|
|
|
|
# Cache the args as a text string to save them in the output dir later
|
|
|
|
|
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
|
|
|
|
|
return args, args_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_deterministic(seed=42, precision=13):
|
|
|
|
|
np.random.seed(seed)
|
|
|
|
|
random.seed(seed)
|
|
|
|
|
# torch.backends.cudnn.benchmarks = False
|
|
|
|
|
# torch.backends.cudnn.deterministic = True
|
|
|
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
|
torch.set_printoptions(precision=precision)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
setup_default_logging()
|
|
|
|
|
args, args_text = _parse_args()
|
|
|
|
|
set_deterministic(args.seed)
|
|
|
|
|
|
|
|
|
|
args.prefetcher = not args.no_prefetcher
|
|
|
|
|
args.distributed = False
|
|
|
|
|