|
|
|
@ -2,10 +2,20 @@
|
|
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
|
"""
|
|
|
|
|
from .model_ema import ModelEma
|
|
|
|
|
from logging import root
|
|
|
|
|
from typing import Sequence
|
|
|
|
|
import re
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import fnmatch
|
|
|
|
|
|
|
|
|
|
from torch.nn.modules import module
|
|
|
|
|
|
|
|
|
|
from .model_ema import ModelEma
|
|
|
|
|
from timm.models.layers.norm import FrozenBatchNorm2d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unwrap_model(model):
|
|
|
|
|
if isinstance(model, ModelEma):
|
|
|
|
|
return unwrap_model(model.ema)
|
|
|
|
@ -89,4 +99,55 @@ def extract_spp_stats(model,
|
|
|
|
|
hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns)
|
|
|
|
|
_ = model(x)
|
|
|
|
|
return hook.stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def freeze(modules, root_module=None, include_bn_running_stats=True, mode=True):
|
|
|
|
|
"""
|
|
|
|
|
Freeze or unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is
|
|
|
|
|
done in place.
|
|
|
|
|
Args:
|
|
|
|
|
modules (nn.Module or list[nn.Module] or str or list[str]): List of modules for which the parameters will be
|
|
|
|
|
(un)frozen. If a string or strings are provided these will be interpreted according to the named modules
|
|
|
|
|
of the provided ``root_module``.
|
|
|
|
|
root_module (nn.Module, optional): Root module relative to which named modules (accessible via
|
|
|
|
|
``root_module.named_modules()``) are referenced. Must be provided if the `modules` argument is specified
|
|
|
|
|
with a string or strings. Defaults to `None`.
|
|
|
|
|
include_bn_running_stats (bool): Whether to also (un)freeze the running statistics of batch norm layers.
|
|
|
|
|
Defaults to `True`.
|
|
|
|
|
mode (bool): Whether to freeze (`True`) or unfreeze (`False`). Defaults to `True`.
|
|
|
|
|
|
|
|
|
|
TODO before finalizing PR: Implement unfreezing of batch norm
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if not isinstance(modules, Sequence):
|
|
|
|
|
modules = [modules]
|
|
|
|
|
|
|
|
|
|
if isinstance(modules[0], str):
|
|
|
|
|
assert root_module is not None, \
|
|
|
|
|
"When providing strings for the `modules` argument, a `root_module` must be provided"
|
|
|
|
|
module_names = modules
|
|
|
|
|
modules = [root_module.get_submodule(m) for m in module_names]
|
|
|
|
|
|
|
|
|
|
for n, m in zip(module_names, modules):
|
|
|
|
|
for p in m.parameters():
|
|
|
|
|
p.requires_grad = (not mode)
|
|
|
|
|
if include_bn_running_stats:
|
|
|
|
|
res = FrozenBatchNorm2d.convert_frozen_batchnorm(m)
|
|
|
|
|
# It's possible that `m` is a type of BatchNorm in itself, in which case
|
|
|
|
|
# `FrozenBatchNorm2d.convert_frozen_batchnorm` won't convert it in place, but will return the converted
|
|
|
|
|
# result. In this case `res` holds the converted result and we may try to re-assign the named module
|
|
|
|
|
if isinstance(m, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)):
|
|
|
|
|
if module_names is not None and root_module is not None:
|
|
|
|
|
root_module.add_module(n, res)
|
|
|
|
|
else:
|
|
|
|
|
raise RuntimeError(
|
|
|
|
|
"Could not freeze batch norm statistics due to a technical limitation. Hint: Try calling "
|
|
|
|
|
"`freeze` with a list of module names while providing a `root_module` argument.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unfreeze(modules, root_module=None, include_bn_running_stats=True):
|
|
|
|
|
"""
|
|
|
|
|
Idiomatic convenience function to call `freeze` with `mode == False`. See docstring of `freeze` for further
|
|
|
|
|
information.
|
|
|
|
|
"""
|
|
|
|
|
freeze(modules, root_module=root_module, include_bn_running_stats=include_bn_running_stats, mode=False)
|
|
|
|
|