commit
0b1f84142f
@ -0,0 +1,679 @@
|
||||
""" DaViT: Dual Attention Vision Transformers
|
||||
|
||||
As described in https://arxiv.org/abs/2204.03645
|
||||
|
||||
Input size invariant transformer architecture that combines channel and spacial
|
||||
attention in each block. The attention mechanisms used are linear in complexity.
|
||||
|
||||
DaViT model defs and weights adapted from https://github.com/dingmyu/davit, original copyright below
|
||||
|
||||
"""
|
||||
# Copyright (c) 2022 Mingyu Ding
|
||||
# All rights reserved.
|
||||
# This source code is licensed under the MIT license
|
||||
import itertools
|
||||
from collections import OrderedDict
|
||||
from functools import partial
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import DropPath, to_2tuple, trunc_normal_, SelectAdaptivePool2d, Mlp, LayerNorm2d, get_norm_layer
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features_fx import register_notrace_function
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._pretrained import generate_default_cfgs
|
||||
from ._registry import register_model
|
||||
|
||||
__all__ = ['DaViT']
|
||||
|
||||
|
||||
class ConvPosEnc(nn.Module):
|
||||
def __init__(self, dim: int, k: int = 3, act: bool = False):
|
||||
super(ConvPosEnc, self).__init__()
|
||||
|
||||
self.proj = nn.Conv2d(dim, dim, k, 1, k // 2, groups=dim)
|
||||
self.act = nn.GELU() if act else nn.Identity()
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
feat = self.proj(x)
|
||||
x = x + self.act(feat)
|
||||
return x
|
||||
|
||||
|
||||
class Stem(nn.Module):
|
||||
""" Size-agnostic implementation of 2D image to patch embedding,
|
||||
allowing input size to be adjusted during model forward operation
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chs=3,
|
||||
out_chs=96,
|
||||
stride=4,
|
||||
norm_layer=LayerNorm2d,
|
||||
):
|
||||
super().__init__()
|
||||
stride = to_2tuple(stride)
|
||||
self.stride = stride
|
||||
self.in_chs = in_chs
|
||||
self.out_chs = out_chs
|
||||
assert stride[0] == 4 # only setup for stride==4
|
||||
self.conv = nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=7,
|
||||
stride=stride,
|
||||
padding=3,
|
||||
)
|
||||
self.norm = norm_layer(out_chs)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
B, C, H, W = x.shape
|
||||
x = F.pad(x, (0, (self.stride[1] - W % self.stride[1]) % self.stride[1]))
|
||||
x = F.pad(x, (0, 0, 0, (self.stride[0] - H % self.stride[0]) % self.stride[0]))
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chs,
|
||||
out_chs,
|
||||
norm_layer=LayerNorm2d,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_chs = in_chs
|
||||
self.out_chs = out_chs
|
||||
|
||||
self.norm = norm_layer(in_chs)
|
||||
self.conv = nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=2,
|
||||
stride=2,
|
||||
padding=0,
|
||||
)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
B, C, H, W = x.shape
|
||||
x = self.norm(x)
|
||||
x = F.pad(x, (0, (2 - W % 2) % 2))
|
||||
x = F.pad(x, (0, 0, 0, (2 - H % 2) % 2))
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class ChannelAttention(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
B, N, C = x.shape
|
||||
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(0)
|
||||
|
||||
k = k * self.scale
|
||||
attention = k.transpose(-1, -2) @ v
|
||||
attention = attention.softmax(dim=-1)
|
||||
x = (attention @ q.transpose(-1, -2)).transpose(-1, -2)
|
||||
x = x.transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class ChannelBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=False,
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
ffn=True,
|
||||
cpe_act=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
||||
self.ffn = ffn
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = ChannelAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias)
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
||||
|
||||
if self.ffn:
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=int(dim * mlp_ratio),
|
||||
act_layer=act_layer,
|
||||
)
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
else:
|
||||
self.norm2 = None
|
||||
self.mlp = None
|
||||
self.drop_path2 = None
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
x = self.cpe1(x).flatten(2).transpose(1, 2)
|
||||
|
||||
cur = self.norm1(x)
|
||||
cur = self.attn(cur)
|
||||
x = x + self.drop_path1(cur)
|
||||
|
||||
x = self.cpe2(x.transpose(1, 2).view(B, C, H, W))
|
||||
|
||||
if self.mlp is not None:
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
||||
x = x.transpose(1, 2).view(B, C, H, W)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def window_partition(x: Tensor, window_size: Tuple[int, int]):
|
||||
"""
|
||||
Args:
|
||||
x: (B, H, W, C)
|
||||
window_size (int): window size
|
||||
Returns:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
||||
return windows
|
||||
|
||||
|
||||
@register_notrace_function # reason: int argument is a Proxy
|
||||
def window_reverse(windows: Tensor, window_size: Tuple[int, int], H: int, W: int):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
|
||||
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||
return x
|
||||
|
||||
|
||||
class WindowAttention(nn.Module):
|
||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||
It supports both of shifted and non-shifted window.
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
window_size (tuple[int]): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
"""
|
||||
|
||||
def __init__(self, dim, window_size, num_heads, qkv_bias=True):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.window_size = window_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
B_, N, C = x.shape
|
||||
|
||||
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(0)
|
||||
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
attn = self.softmax(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class SpatialBlock(nn.Module):
|
||||
r""" Windows Block.
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Window size.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
||||
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads,
|
||||
window_size=7,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=True,
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
ffn=True,
|
||||
cpe_act=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.ffn = ffn
|
||||
self.num_heads = num_heads
|
||||
self.window_size = to_2tuple(window_size)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = WindowAttention(
|
||||
dim,
|
||||
self.window_size,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
)
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
||||
if self.ffn:
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
)
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
else:
|
||||
self.norm2 = None
|
||||
self.mlp = None
|
||||
self.drop_path1 = None
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
shortcut = self.cpe1(x).flatten(2).transpose(1, 2)
|
||||
|
||||
x = self.norm1(shortcut)
|
||||
x = x.view(B, H, W, C)
|
||||
|
||||
pad_l = pad_t = 0
|
||||
pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
|
||||
pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
|
||||
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
||||
_, Hp, Wp, _ = x.shape
|
||||
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C)
|
||||
|
||||
# W-MSA/SW-MSA
|
||||
attn_windows = self.attn(x_windows)
|
||||
|
||||
# merge windows
|
||||
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
|
||||
x = window_reverse(attn_windows, self.window_size, Hp, Wp)
|
||||
|
||||
# if pad_r > 0 or pad_b > 0:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
|
||||
x = x.view(B, H * W, C)
|
||||
x = shortcut + self.drop_path1(x)
|
||||
|
||||
x = self.cpe2(x.transpose(1, 2).view(B, C, H, W))
|
||||
|
||||
if self.mlp is not None:
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
||||
x = x.transpose(1, 2).view(B, C, H, W)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DaViTStage(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chs,
|
||||
out_chs,
|
||||
depth=1,
|
||||
downsample=True,
|
||||
attn_types=('spatial', 'channel'),
|
||||
num_heads=3,
|
||||
window_size=7,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
drop_path_rates=(0, 0),
|
||||
norm_layer=LayerNorm2d,
|
||||
norm_layer_cl=nn.LayerNorm,
|
||||
ffn=True,
|
||||
cpe_act=False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.grad_checkpointing = False
|
||||
|
||||
# downsample embedding layer at the beginning of each stage
|
||||
if downsample:
|
||||
self.downsample = Downsample(in_chs, out_chs, norm_layer=norm_layer)
|
||||
else:
|
||||
self.downsample = nn.Identity()
|
||||
|
||||
'''
|
||||
repeating alternating attention blocks in each stage
|
||||
default: (spatial -> channel) x depth
|
||||
|
||||
potential opportunity to integrate with a more general version of ByobNet/ByoaNet
|
||||
since the logic is similar
|
||||
'''
|
||||
stage_blocks = []
|
||||
for block_idx in range(depth):
|
||||
dual_attention_block = []
|
||||
for attn_idx, attn_type in enumerate(attn_types):
|
||||
if attn_type == 'spatial':
|
||||
dual_attention_block.append(SpatialBlock(
|
||||
dim=out_chs,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
drop_path=drop_path_rates[block_idx],
|
||||
norm_layer=norm_layer_cl,
|
||||
ffn=ffn,
|
||||
cpe_act=cpe_act,
|
||||
window_size=window_size,
|
||||
))
|
||||
elif attn_type == 'channel':
|
||||
dual_attention_block.append(ChannelBlock(
|
||||
dim=out_chs,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
drop_path=drop_path_rates[block_idx],
|
||||
norm_layer=norm_layer_cl,
|
||||
ffn=ffn,
|
||||
cpe_act=cpe_act
|
||||
))
|
||||
stage_blocks.append(nn.Sequential(*dual_attention_block))
|
||||
self.blocks = nn.Sequential(*stage_blocks)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.grad_checkpointing = enable
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
x = self.downsample(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint_seq(self.blocks, x)
|
||||
else:
|
||||
x = self.blocks(x)
|
||||
return x
|
||||
|
||||
|
||||
class DaViT(nn.Module):
|
||||
r""" DaViT
|
||||
A PyTorch implementation of `DaViT: Dual Attention Vision Transformers` - https://arxiv.org/abs/2204.03645
|
||||
Supports arbitrary input sizes and pyramid feature extraction
|
||||
|
||||
Args:
|
||||
in_chans (int): Number of input image channels. Default: 3
|
||||
num_classes (int): Number of classes for classification head. Default: 1000
|
||||
depths (tuple(int)): Number of blocks in each stage. Default: (1, 1, 3, 1)
|
||||
embed_dims (tuple(int)): Patch embedding dimension. Default: (96, 192, 384, 768)
|
||||
num_heads (tuple(int)): Number of attention heads in different layers. Default: (3, 6, 12, 24)
|
||||
window_size (int): Window size. Default: 7
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
||||
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
||||
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chans=3,
|
||||
depths=(1, 1, 3, 1),
|
||||
embed_dims=(96, 192, 384, 768),
|
||||
num_heads=(3, 6, 12, 24),
|
||||
window_size=7,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
norm_layer='layernorm2d',
|
||||
norm_layer_cl='layernorm',
|
||||
norm_eps=1e-5,
|
||||
attn_types=('spatial', 'channel'),
|
||||
ffn=True,
|
||||
cpe_act=False,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
num_classes=1000,
|
||||
global_pool='avg',
|
||||
head_norm_first=False,
|
||||
):
|
||||
super().__init__()
|
||||
num_stages = len(embed_dims)
|
||||
assert num_stages == len(num_heads) == len(depths)
|
||||
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps)
|
||||
norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps)
|
||||
self.num_classes = num_classes
|
||||
self.num_features = embed_dims[-1]
|
||||
self.drop_rate = drop_rate
|
||||
self.grad_checkpointing = False
|
||||
self.feature_info = []
|
||||
|
||||
self.stem = Stem(in_chans, embed_dims[0], norm_layer=norm_layer)
|
||||
in_chs = embed_dims[0]
|
||||
|
||||
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
stages = []
|
||||
for stage_idx in range(num_stages):
|
||||
out_chs = embed_dims[stage_idx]
|
||||
stage = DaViTStage(
|
||||
in_chs,
|
||||
out_chs,
|
||||
depth=depths[stage_idx],
|
||||
downsample=stage_idx > 0,
|
||||
attn_types=attn_types,
|
||||
num_heads=num_heads[stage_idx],
|
||||
window_size=window_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
drop_path_rates=dpr[stage_idx],
|
||||
norm_layer=norm_layer,
|
||||
norm_layer_cl=norm_layer_cl,
|
||||
ffn=ffn,
|
||||
cpe_act=cpe_act,
|
||||
)
|
||||
in_chs = out_chs
|
||||
stages.append(stage)
|
||||
self.feature_info += [dict(num_chs=out_chs, reduction=2, module=f'stages.{stage_idx}')]
|
||||
|
||||
self.stages = nn.Sequential(*stages)
|
||||
|
||||
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
|
||||
# otherwise pool -> norm -> fc, the default DaViT order, similar to ConvNeXt
|
||||
# FIXME generalize this structure to ClassifierHead
|
||||
self.norm_pre = norm_layer(self.num_features) if head_norm_first else nn.Identity()
|
||||
self.head = nn.Sequential(OrderedDict([
|
||||
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
|
||||
('norm', nn.Identity() if head_norm_first else norm_layer(self.num_features)),
|
||||
('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
|
||||
('drop', nn.Dropout(self.drop_rate)),
|
||||
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())]))
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.grad_checkpointing = enable
|
||||
for stage in self.stages:
|
||||
stage.set_grad_checkpointing(enable=enable)
|
||||
|
||||
@torch.jit.ignore
|
||||
def get_classifier(self):
|
||||
return self.head.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=None):
|
||||
if global_pool is not None:
|
||||
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
||||
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
|
||||
self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint_seq(self.stages, x)
|
||||
else:
|
||||
x = self.stages(x)
|
||||
x = self.norm_pre(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
x = self.head.global_pool(x)
|
||||
x = self.head.norm(x)
|
||||
x = self.head.flatten(x)
|
||||
x = self.head.drop(x)
|
||||
return x if pre_logits else self.head.fc(x)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model):
|
||||
""" Remap MSFT checkpoints -> timm """
|
||||
if 'head.fc.weight' in state_dict:
|
||||
return state_dict # non-MSFT checkpoint
|
||||
|
||||
if 'state_dict' in state_dict:
|
||||
state_dict = state_dict['state_dict']
|
||||
|
||||
import re
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
k = re.sub(r'patch_embeds.([0-9]+)', r'stages.\1.downsample', k)
|
||||
k = re.sub(r'main_blocks.([0-9]+)', r'stages.\1.blocks', k)
|
||||
k = k.replace('downsample.proj', 'downsample.conv')
|
||||
k = k.replace('stages.0.downsample', 'stem')
|
||||
k = k.replace('head.', 'head.fc.')
|
||||
k = k.replace('norms.', 'head.norm.')
|
||||
k = k.replace('cpe.0', 'cpe1')
|
||||
k = k.replace('cpe.1', 'cpe2')
|
||||
out_dict[k] = v
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_davit(variant, pretrained=False, **kwargs):
|
||||
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
|
||||
out_indices = kwargs.pop('out_indices', default_out_indices)
|
||||
|
||||
model = build_model_with_cfg(
|
||||
DaViT,
|
||||
variant,
|
||||
pretrained,
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
||||
**kwargs)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.95, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
# TODO contact authors to get larger pretrained models
|
||||
default_cfgs = generate_default_cfgs({
|
||||
# official microsoft weights from https://github.com/dingmyu/davit
|
||||
'davit_tiny.msft_in1k': _cfg(
|
||||
hf_hub_id='timm/'),
|
||||
'davit_small.msft_in1k': _cfg(
|
||||
hf_hub_id='timm/'),
|
||||
'davit_base.msft_in1k': _cfg(
|
||||
hf_hub_id='timm/'),
|
||||
'davit_large': _cfg(),
|
||||
'davit_huge': _cfg(),
|
||||
'davit_giant': _cfg(),
|
||||
})
|
||||
|
||||
|
||||
@register_model
|
||||
def davit_tiny(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24), **kwargs)
|
||||
return _create_davit('davit_tiny', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def davit_small(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(1, 1, 9, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24), **kwargs)
|
||||
return _create_davit('davit_small', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def davit_base(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32), **kwargs)
|
||||
return _create_davit('davit_base', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def davit_large(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(1, 1, 9, 1), embed_dims=(192, 384, 768, 1536), num_heads=(6, 12, 24, 48), **kwargs)
|
||||
return _create_davit('davit_large', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def davit_huge(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64), **kwargs)
|
||||
return _create_davit('davit_huge', pretrained=pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def davit_giant(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
depths=(1, 1, 12, 3), embed_dims=(384, 768, 1536, 3072), num_heads=(12, 24, 48, 96), **kwargs)
|
||||
return _create_davit('davit_giant', pretrained=pretrained, **model_kwargs)
|
@ -1 +1 @@
|
||||
__version__ = '0.8.5dev0'
|
||||
__version__ = '0.8.8dev0'
|
||||
|
Loading…
Reference in new issue