diff --git a/benchmark.py b/benchmark.py index c745e278..faac1fc5 100755 --- a/benchmark.py +++ b/benchmark.py @@ -45,6 +45,8 @@ _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch Benchmark') # benchmark specific args +parser.add_argument('--model-list', metavar='NAME', default='', + help='txt file based list of model names to benchmark') parser.add_argument('--bench', default='both', type=str, help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'inference'") parser.add_argument('--detail', action='store_true', default=False, @@ -357,7 +359,7 @@ def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs): except RuntimeError as e: torch.cuda.empty_cache() batch_size = decay_batch_exp(batch_size) - print(f'Reducing batch size to {batch_size}') + print(f'Error: {str(e)} while running benchmark. Reducing batch size to {batch_size} for retry.') return results @@ -413,7 +415,12 @@ def main(): model_cfgs = [] model_names = [] - if args.model == 'all': + if args.model_list: + args.model = '' + with open(args.model_list) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = [(n, None) for n in model_names] + elif args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models(pretrained=True, exclude_filters=['*in21k']) @@ -429,6 +436,8 @@ def main(): results = [] try: for m, _ in model_cfgs: + if not m: + continue args.model = m r = benchmark(args) results.append(r) diff --git a/timm/models/vision_transformer.py b/timm/models/vision_transformer.py index f6a09ac2..f834d8e1 100644 --- a/timm/models/vision_transformer.py +++ b/timm/models/vision_transformer.py @@ -103,48 +103,90 @@ default_cfgs = { num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='patch_embed.backbone.stem.conv'), # hybrid in-1k models (weights ported from official Google JAX impl where they exist) + 'vit_tiny_r_s16_p8_224': _cfg( + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_tiny_r_s16_p8_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_tiny_r_s16_p8_384': _cfg( + input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r_s16_p8_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r_s16_p8_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r_s16_p8_384': _cfg( + input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r20_s16_p2_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r20_s16_p2_224_in21k': _cfg( + inum_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_small_r20_s16_p2_384': _cfg( input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + + 'vit_small_r20_s16_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r20_s16_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_small_r20_s16_384': _cfg( input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r26_s32_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_small_r26_s32_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_small_r26_s32_384': _cfg( input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + 'vit_base_r20_s16_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_base_r20_s16_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_base_r20_s16_384': _cfg( input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + 'vit_base_r26_s32_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_base_r26_s32_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_base_r26_s32_384': _cfg( input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + 'vit_base_r50_s16_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_base_r50_s16_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), + 'vit_large_r50_s32_224': _cfg( - input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, + first_conv='patch_embed.backbone.stem.conv'), + 'vit_large_r50_s32_224_in21k': _cfg( + num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), 'vit_large_r50_s32_384': _cfg( input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, @@ -159,8 +201,19 @@ default_cfgs = { # deit models (FB weights) 'vit_deit_tiny_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), + 'vit_deit_tiny_patch16_224_in21k': _cfg(num_classes=21843), + 'vit_deit_tiny_patch16_224_in21k_norep': _cfg(num_classes=21843), + 'vit_deit_tiny_patch16_384': _cfg(input_size=(3, 384, 384)), + 'vit_deit_small_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), + 'vit_deit_small_patch16_224_in21k': _cfg(num_classes=21843), + 'vit_deit_small_patch16_384': _cfg(input_size=(3, 384, 384)), + + 'vit_deit_small_patch32_224': _cfg(), + 'vit_deit_small_patch32_224_in21k': _cfg(num_classes=21843), + 'vit_deit_small_patch32_384': _cfg(input_size=(3, 384, 384)), + 'vit_deit_base_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',), 'vit_deit_base_patch16_384': _cfg( @@ -728,7 +781,29 @@ def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs): backbone = _resnetv2(layers=(), **kwargs) model_kwargs = dict( patch_size=8, embed_dim=192, depth=12, num_heads=3, hybrid_backbone=backbone, **kwargs) - model = _create_vision_transformer('vit_small_r20_s16_p2_224', pretrained=pretrained, **model_kwargs) + model = _create_vision_transformer('vit_tiny_r_s16_p8_224', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_tiny_r_s16_p8_224_in21k(pretrained=False, **kwargs): + """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224. + """ + backbone = _resnetv2(layers=(), **kwargs) + model_kwargs = dict( + patch_size=8, embed_dim=192, depth=12, num_heads=3, representation_size=192, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_tiny_r_s16_p8_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs): + """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224. + """ + backbone = _resnetv2(layers=(), **kwargs) + model_kwargs = dict( + patch_size=8, embed_dim=192, depth=12, num_heads=3, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_tiny_r_s16_p8_384', pretrained=pretrained, **model_kwargs) return model @@ -740,6 +815,29 @@ def vit_small_r_s16_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs) model = _create_vision_transformer('vit_small_r_s16_p8_224', pretrained=pretrained, **model_kwargs) + + return model + + +@register_model +def vit_small_r_s16_p8_224_in21k(pretrained=False, **kwargs): + """ R+ViT-S/S16 w/ 8x8 patch hybrid @ 224 x 224. + """ + backbone = _resnetv2(layers=(), **kwargs) + model_kwargs = dict( + patch_size=8, embed_dim=384, depth=12, num_heads=6, representation_size=384, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_small_r_s16_p8_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_small_r_s16_p8_384(pretrained=False, **kwargs): + """ R+ViT-S/S16 w/ 8x8 patch hybrid @ 224 x 224. + """ + backbone = _resnetv2(layers=(), **kwargs) + model_kwargs = dict( + patch_size=8, embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_small_r_s16_p8_384', pretrained=pretrained, **model_kwargs) return model @@ -754,6 +852,17 @@ def vit_small_r20_s16_p2_224(pretrained=False, **kwargs): return model +@register_model +def vit_small_r20_s16_p2_224_in21k(pretrained=False, **kwargs): + """ R52+ViT-S/S16 w/ 2x2 patch hybrid @ 224 x 224. + """ + backbone = _resnetv2((2, 4), **kwargs) + model_kwargs = dict( + patch_size=2, embed_dim=384, depth=12, num_heads=6, representation_size=384, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_small_r20_s16_p2_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_small_r20_s16_p2_384(pretrained=False, **kwargs): """ R20+ViT-S/S16 w/ 2x2 Patch hybrid @ 384x384. @@ -775,6 +884,16 @@ def vit_small_r20_s16_224(pretrained=False, **kwargs): return model +@register_model +def vit_small_r20_s16_224_in21k(pretrained=False, **kwargs): + """ R20+ViT-S/S16 hybrid. + """ + backbone = _resnetv2((2, 2, 2), **kwargs) + model_kwargs = dict(embed_dim=384, depth=12, num_heads=6, representation_size=384, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_small_r20_s16_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_small_r20_s16_384(pretrained=False, **kwargs): """ R20+ViT-S/S16 hybrid @ 384x384. @@ -795,6 +914,17 @@ def vit_small_r26_s32_224(pretrained=False, **kwargs): return model +@register_model +def vit_small_r26_s32_224_in21k(pretrained=False, **kwargs): + """ R26+ViT-S/S32 hybrid. + """ + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_kwargs = dict( + embed_dim=384, depth=12, num_heads=6, representation_size=384, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_small_r26_s32_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_small_r26_s32_384(pretrained=False, **kwargs): """ R26+ViT-S/S32 hybrid @ 384x384. @@ -810,12 +940,22 @@ def vit_base_r20_s16_224(pretrained=False, **kwargs): """ R20+ViT-B/S16 hybrid. """ backbone = _resnetv2((2, 2, 2), **kwargs) - model_kwargs = dict( - embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, act_layer=nn.SiLU, **kwargs) + model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs) model = _create_vision_transformer('vit_base_r20_s16_224', pretrained=pretrained, **model_kwargs) return model +@register_model +def vit_base_r20_s16_224_in21k(pretrained=False, **kwargs): + """ R20+ViT-B/S16 hybrid. + """ + backbone = _resnetv2((2, 2, 2), **kwargs) + model_kwargs = dict( + embed_dim=768, depth=12, num_heads=12, representation_size=768, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_base_r20_s16_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_base_r20_s16_384(pretrained=False, **kwargs): """ R20+ViT-B/S16 hybrid. @@ -836,6 +976,27 @@ def vit_base_r26_s32_224(pretrained=False, **kwargs): return model +@register_model +def vit_base_r26_s32_224_in21k(pretrained=False, **kwargs): + """ R26+ViT-B/S32 hybrid. + """ + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_kwargs = dict( + embed_dim=768, depth=12, num_heads=12, representation_size=768, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_base_r26_s32_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_base_r26_s32_384(pretrained=False, **kwargs): + """ R26+ViT-B/S32 hybrid. + """ + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_base_r26_s32_384', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_base_r50_s16_224(pretrained=False, **kwargs): """ R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929). @@ -867,6 +1028,17 @@ def vit_large_r50_s32_224(pretrained=False, **kwargs): return model +@register_model +def vit_large_r50_s32_224_in21k(pretrained=False, **kwargs): + """ R50+ViT-L/S32 hybrid. + """ + backbone = _resnetv2((3, 4, 6, 3), **kwargs) + model_kwargs = dict( + embed_dim=768, depth=12, num_heads=12, representation_size=768, hybrid_backbone=backbone, **kwargs) + model = _create_vision_transformer('vit_large_r50_s32_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_large_r50_s32_384(pretrained=False, **kwargs): """ R50+ViT-L/S32 hybrid. @@ -927,6 +1099,31 @@ def vit_deit_tiny_patch16_224(pretrained=False, **kwargs): return model +@register_model +def vit_deit_tiny_patch16_224_in21k_norep(pretrained=False, **kwargs): + """ DeiT-tiny model""" + model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) + model = _create_vision_transformer('vit_deit_tiny_patch16_224_in21k_norep', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_deit_tiny_patch16_224_in21k(pretrained=False, **kwargs): + """ DeiT-tiny model""" + model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, representation_size=192, **kwargs) + model = _create_vision_transformer('vit_deit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_deit_tiny_patch16_384(pretrained=False, **kwargs): + """ DeiT-tiny model""" + model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) + model = _create_vision_transformer('vit_deit_tiny_patch16_384', pretrained=pretrained, **model_kwargs) + return model + + + @register_model def vit_deit_small_patch16_224(pretrained=False, **kwargs): """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). @@ -937,6 +1134,48 @@ def vit_deit_small_patch16_224(pretrained=False, **kwargs): return model +@register_model +def vit_deit_small_patch16_224_in21k(pretrained=False, **kwargs): + """ DeiT-small """ + model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, representation_size=384, **kwargs) + model = _create_vision_transformer('vit_deit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_deit_small_patch16_384(pretrained=False, **kwargs): + """ DeiT-small """ + model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) + model = _create_vision_transformer('vit_deit_small_patch16_384', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_deit_small_patch32_224(pretrained=False, **kwargs): + """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) + model = _create_vision_transformer('vit_deit_small_patch32_224', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_deit_small_patch32_224_in21k(pretrained=False, **kwargs): + """ DeiT-small """ + model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, representation_size=384, **kwargs) + model = _create_vision_transformer('vit_deit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_deit_small_patch32_384(pretrained=False, **kwargs): + """ DeiT-small """ + model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) + model = _create_vision_transformer('vit_deit_small_patch32_384', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_deit_base_patch16_224(pretrained=False, **kwargs): """ DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).