feat: add triplet attention layer

pull/382/head
iyaja 5 years ago
parent f8463b8fa9
commit 06b86a3f7a

@ -6,6 +6,7 @@ import torch
from .se import SEModule, EffectiveSEModule
from .eca import EcaModule, CecaModule
from .cbam import CbamModule, LightCbamModule
from .triplet import TripletModule
def create_attn(attn_type, channels, **kwargs):
@ -25,6 +26,8 @@ def create_attn(attn_type, channels, **kwargs):
module_cls = CbamModule
elif attn_type == 'lcbam':
module_cls = LightCbamModule
elif attn_type == 'triplet':
module_cls = TripletModule
else:
assert False, "Invalid attn module (%s)" % attn_type
elif isinstance(attn_type, bool):

@ -0,0 +1,71 @@
""" Triplet Attention Module
Implementation of triplet attention module from https://arxiv.org/abs/2010.03045
(slightly) Modified from official implementation: https://github.com/LandskapeAI/triplet-attention
Original license:
MIT License
Copyright (c) 2020 LandskapeAI
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import torch
from torch import nn as nn
from .conv_bn_act import ConvBnAct
class ZPool(nn.Module):
def forward(self, x):
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )
class AttentionGate(nn.Module):
def __init__(self, kernel_size=7):
super(AttentionGate, self).__init__()
self.zpool = ZPool()
self.conv = ConvBnAct(2, 1, kernel_size=kernel_size, stride=1, padding=(kernel_size-1) // 2, apply_act=False)
def forward(self, x):
x_out = self.conv(self.zpool(x))
scale = torch.sigmoid_(x_out)
return x * scale
class TripletAttention(nn.Module):
def __init__(self, no_spatial=False):
super(TripletAttention, self).__init__()
self.cw = AttentionGate()
self.hc = AttentionGate()
self.no_spatial=no_spatial
if not no_spatial:
self.hw = AttentionGate()
def forward(self, x):
x_perm1 = x.permute(0,2,1,3).contiguous()
x_out1 = self.cw(x_perm1)
x_out11 = x_out1.permute(0,2,1,3).contiguous()
x_perm2 = x.permute(0,3,2,1).contiguous()
x_out2 = self.hc(x_perm2)
x_out21 = x_out2.permute(0,3,2,1).contiguous()
if not self.no_spatial:
x_out = self.hw(x)
x_out = (1/3) * (x_out + x_out11 + x_out21)
else:
x_out = 0.5 * (x_out11 + x_out21)
return x_out

@ -1280,3 +1280,124 @@ def senet154(pretrained=False, **kwargs):
block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep',
down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se'), **kwargs)
return _create_resnet('senet154', pretrained, **model_args)
@register_model
def triplet_resnet18(pretrained=False, **kwargs):
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet18', pretrained, **model_args)
@register_model
def triplet_resnet34(pretrained=False, **kwargs):
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet34', pretrained, **model_args)
@register_model
def triplet_resnet50(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet50', pretrained, **model_args)
@register_model
def triplet_resnet50tn(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered_narrow', avg_down=True,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet50tn', pretrained, **model_args)
@register_model
def triplet_resnet101(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet101', pretrained, **model_args)
@register_model
def triplet_resnet152(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet152', pretrained, **model_args)
@register_model
def triplet_resnet152d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet152d', pretrained, **model_args)
@register_model
def triplet_resnet152d_320(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnet152d_320', pretrained, **model_args)
@register_model
def triplet_resnext26_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext26_32x4d', pretrained, **model_args)
@register_model
def triplet_resnext26d_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-26-D (with Triplet Attention) model.`
This is technically a 28 layer ResNet, using the 'D' modifier from Gluon / bag-of-tricks for
combination of deep stem and avg_pool in downsample.
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep', avg_down=True, block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext26d_32x4d', pretrained, **model_args)
@register_model
def triplet_resnext26t_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNet-26-T (with Triplet Attention) model.
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 48, 64 channels
in the deep stem.
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext26t_32x4d', pretrained, **model_args)
@register_model
def triplet_resnext26tn_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-26-TN (with Triplet Attention) model.
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels
in the deep stem. The channel number of the middle stem conv is narrower than the 'T' variant.
"""
model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered_narrow', avg_down=True, block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext26tn_32x4d', pretrained, **model_args)
@register_model
def triplet_resnext50_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext50_32x4d', pretrained, **model_args)
@register_model
def triplet_resnext101_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext101_32x4d', pretrained, **model_args)
@register_model
def triplet_resnext101_32x8d(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8,
block_args=dict(attn_layer='triplet'), **kwargs)
return _create_resnet('triplet_resnext101_32x8d', pretrained, **model_args)
Loading…
Cancel
Save