|
|
|
@ -21,6 +21,8 @@ original copyright below
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
from functools import partial
|
|
|
|
|
import torch
|
|
|
|
@ -62,30 +64,8 @@ class Downsampling(nn.Module):
|
|
|
|
|
x = self.conv(x)
|
|
|
|
|
x = self.post_norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
|
|
|
|
return x
|
|
|
|
|
'''
|
|
|
|
|
class Downsampling(nn.Module):
|
|
|
|
|
"""
|
|
|
|
|
Downsampling implemented by a layer of convolution.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, in_channels, out_channels,
|
|
|
|
|
kernel_size, stride=1, padding=0,
|
|
|
|
|
pre_norm=None, post_norm=None, pre_permute = False):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.pre_norm = pre_norm(in_channels) if pre_norm else nn.Identity()
|
|
|
|
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,
|
|
|
|
|
stride=stride, padding=padding)
|
|
|
|
|
self.post_norm = post_norm(out_channels) if post_norm else nn.Identity()
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
print(x.shape)
|
|
|
|
|
x = self.pre_norm(x)
|
|
|
|
|
print(x.shape)
|
|
|
|
|
x = self.conv(x)
|
|
|
|
|
print(x.shape)
|
|
|
|
|
x = self.post_norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
|
|
|
|
print(x.shape)
|
|
|
|
|
return x
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
class Scale(nn.Module):
|
|
|
|
|
"""
|
|
|
|
|
Scale vector by element multiplications.
|
|
|
|
@ -237,55 +217,7 @@ class LayerNormGeneral(nn.Module):
|
|
|
|
|
x = x * self.weight
|
|
|
|
|
x = x + self.bias
|
|
|
|
|
return x
|
|
|
|
|
'''
|
|
|
|
|
class LayerNormGeneral(nn.Module):
|
|
|
|
|
r""" General LayerNorm for different situations.
|
|
|
|
|
Args:
|
|
|
|
|
affine_shape (int, list or tuple): The shape of affine weight and bias.
|
|
|
|
|
Usually the affine_shape=C, but in some implementation, like torch.nn.LayerNorm,
|
|
|
|
|
the affine_shape is the same as normalized_dim by default.
|
|
|
|
|
To adapt to different situations, we offer this argument here.
|
|
|
|
|
normalized_dim (tuple or list): Which dims to compute mean and variance.
|
|
|
|
|
scale (bool): Flag indicates whether to use scale or not.
|
|
|
|
|
bias (bool): Flag indicates whether to use scale or not.
|
|
|
|
|
We give several examples to show how to specify the arguments.
|
|
|
|
|
LayerNorm (https://arxiv.org/abs/1607.06450):
|
|
|
|
|
For input shape of (B, *, C) like (B, N, C) or (B, H, W, C),
|
|
|
|
|
affine_shape=C, normalized_dim=(-1, ), scale=True, bias=True;
|
|
|
|
|
For input shape of (B, C, H, W),
|
|
|
|
|
affine_shape=(C, 1, 1), normalized_dim=(1, ), scale=True, bias=True.
|
|
|
|
|
Modified LayerNorm (https://arxiv.org/abs/2111.11418)
|
|
|
|
|
that is idental to partial(torch.nn.GroupNorm, num_groups=1):
|
|
|
|
|
For input shape of (B, N, C),
|
|
|
|
|
affine_shape=C, normalized_dim=(1, 2), scale=True, bias=True;
|
|
|
|
|
For input shape of (B, H, W, C),
|
|
|
|
|
affine_shape=C, normalized_dim=(1, 2, 3), scale=True, bias=True;
|
|
|
|
|
For input shape of (B, C, H, W),
|
|
|
|
|
affine_shape=(C, 1, 1), normalized_dim=(1, 2, 3), scale=True, bias=True.
|
|
|
|
|
For the several metaformer baslines,
|
|
|
|
|
IdentityFormer, RandFormer and PoolFormerV2 utilize Modified LayerNorm without bias (bias=False);
|
|
|
|
|
ConvFormer and CAFormer utilizes LayerNorm without bias (bias=False).
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, affine_shape=None, normalized_dim=(-1, ), scale=True,
|
|
|
|
|
bias=True, eps=1e-5):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.normalized_dim = normalized_dim
|
|
|
|
|
self.use_scale = scale
|
|
|
|
|
self.use_bias = bias
|
|
|
|
|
self.weight = nn.Parameter(torch.ones(affine_shape)) if scale else None
|
|
|
|
|
self.bias = nn.Parameter(torch.zeros(affine_shape)) if bias else None
|
|
|
|
|
self.eps = eps
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
c = x - x.mean(self.normalized_dim, keepdim=True)
|
|
|
|
|
s = c.pow(2).mean(self.normalized_dim, keepdim=True)
|
|
|
|
|
x = c / torch.sqrt(s + self.eps)
|
|
|
|
|
if self.use_scale:
|
|
|
|
|
x = x * self.weight
|
|
|
|
|
if self.use_bias:
|
|
|
|
|
x = x + self.bias
|
|
|
|
|
return x
|
|
|
|
|
'''
|
|
|
|
|
class SepConv(nn.Module):
|
|
|
|
|
r"""
|
|
|
|
|
Inverted separable convolution from MobileNetV2: https://arxiv.org/abs/1801.04381.
|
|
|
|
|