Some halo and bottleneck attn code cleanup, add halonet50ts weights, use optimal crop ratios

pull/880/head
Ross Wightman 3 years ago
parent d9abfa48df
commit 007bc39323

@ -3,7 +3,7 @@
A flexible network w/ dataclass based config for stacking NN blocks including
self-attention (or similar) layers.
Currently used to implement experimential variants of:
Currently used to implement experimental variants of:
* Bottleneck Transformers
* Lambda ResNets
* HaloNets
@ -46,15 +46,16 @@ default_cfgs = {
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'halonet26t': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_256-9b4bf0b3.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'sehalonet33ts': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'halonet50ts': _cfg(
url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_256_ra3-f07eab9f.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'eca_halonext26ts': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_256-1e55880b.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'lambda_resnet26t': _cfg(
url='',

@ -118,12 +118,12 @@ class BottleneckAttn(nn.Module):
x = x.reshape(B, -1, self.dim_head, H * W).transpose(-1, -2)
q, k, v = torch.split(x, self.num_heads, dim=1)
attn_logits = (q @ k.transpose(-1, -2)) * self.scale
attn_logits = attn_logits + self.pos_embed(q) # B, num_heads, H * W, H * W
attn = (q @ k.transpose(-1, -2)) * self.scale
attn = attn + self.pos_embed(q) # B, num_heads, H * W, H * W
attn = attn.softmax(dim=-1)
attn_out = attn_logits.softmax(dim=-1)
attn_out = (attn_out @ v).transpose(-1, -2).reshape(B, self.dim_out, H, W) # B, dim_out, H, W
attn_out = self.pool(attn_out)
return attn_out
out = (attn @ v).transpose(-1, -2).reshape(B, self.dim_out, H, W) # B, dim_out, H, W
out = self.pool(out)
return out

@ -106,22 +106,23 @@ class HaloAttn(nn.Module):
assert dim_out % num_heads == 0
self.stride = stride
self.num_heads = num_heads
self.dim_head = dim_head or dim // num_heads
self.dim_qk = num_heads * self.dim_head
self.dim_v = dim_out
self.dim_head_qk = dim_head or dim_out // num_heads
self.dim_head_v = dim_out // self.num_heads
self.dim_out_qk = num_heads * self.dim_head_qk
self.dim_out_v = num_heads * self.dim_head_v
self.block_size = block_size
self.halo_size = halo_size
self.win_size = block_size + halo_size * 2 # neighbourhood window size
self.scale = self.dim_head ** -0.5
self.scale = self.dim_head_qk ** -0.5
# FIXME not clear if this stride behaviour is what the paper intended
# Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving
# data in unfolded block form. I haven't wrapped my head around how that'd look.
self.q = nn.Conv2d(dim, self.dim_qk, 1, stride=self.stride, bias=qkv_bias)
self.kv = nn.Conv2d(dim, self.dim_qk + self.dim_v, 1, bias=qkv_bias)
self.q = nn.Conv2d(dim, self.dim_out_qk, 1, stride=self.stride, bias=qkv_bias)
self.kv = nn.Conv2d(dim, self.dim_out_qk + self.dim_out_v, 1, bias=qkv_bias)
self.pos_embed = PosEmbedRel(
block_size=block_size // self.stride, win_size=self.win_size, dim_head=self.dim_head, scale=self.scale)
block_size=block_size // self.stride, win_size=self.win_size, dim_head=self.dim_head_qk, scale=self.scale)
self.reset_parameters()
@ -143,37 +144,42 @@ class HaloAttn(nn.Module):
q = self.q(x)
# unfold
q = q.reshape(-1, self.dim_head, num_h_blocks, bs_stride, num_w_blocks, bs_stride).permute(0, 1, 3, 5, 2, 4)
q = q.reshape(-1, self.dim_head_qk, num_h_blocks, bs_stride, num_w_blocks, bs_stride).permute(0, 1, 3, 5, 2, 4)
# B, num_heads * dim_head * block_size ** 2, num_blocks
q = q.reshape(B * self.num_heads, self.dim_head, -1, num_blocks).transpose(1, 3)
q = q.reshape(B * self.num_heads, self.dim_head_qk, -1, num_blocks).transpose(1, 3)
# B * num_heads, num_blocks, block_size ** 2, dim_head
kv = self.kv(x)
# generate overlapping windows for kv
kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size])
kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape(
B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), num_blocks, -1).permute(0, 2, 3, 1)
# NOTE these two alternatives are equivalent, but above is the best balance of performance and clarity
# if self.stride_tricks:
# kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous()
# kv = kv.as_strided((
# B, self.dim_qk + self.dim_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks),
# stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size))
# else:
# kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size)
# kv = kv.reshape(
# B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), -1, num_blocks).transpose(1, 3)
k, v = torch.split(kv, [self.dim_head, self.dim_v // self.num_heads], dim=-1)
# B * num_heads, num_blocks, block_size ** 2, dim_head or dim_v // num_heads
attn_logits = (q @ k.transpose(-1, -2)) * self.scale # FIXME should usual attn scale be applied?
attn_logits = attn_logits + self.pos_embed(q) # B * num_heads, block_size ** 2, win_size ** 2
attn_out = attn_logits.softmax(dim=-1)
attn_out = (attn_out @ v).transpose(1, 3) # B * num_heads, dim_v // num_heads, block_size ** 2, num_blocks
B * self.num_heads, self.dim_head_qk + self.dim_head_v, num_blocks, -1).permute(0, 2, 3, 1)
k, v = torch.split(kv, [self.dim_head_qk, self.dim_head_v], dim=-1)
# B * num_heads, num_blocks, win_size ** 2, dim_head_qk or dim_head_v
attn = (q @ k.transpose(-1, -2)) * self.scale
attn = attn + self.pos_embed(q) # B * num_heads, num_blocks, block_size ** 2, win_size ** 2
attn = attn.softmax(dim=-1)
out = (attn @ v).transpose(1, 3) # B * num_heads, dim_head_v, block_size ** 2, num_blocks
# fold
attn_out = attn_out.reshape(-1, bs_stride, bs_stride, num_h_blocks, num_w_blocks)
attn_out = attn_out.permute(0, 3, 1, 4, 2).contiguous().view(B, self.dim_v, H // self.stride, W // self.stride)
out = out.reshape(-1, bs_stride, bs_stride, num_h_blocks, num_w_blocks)
out = out.permute(0, 3, 1, 4, 2).contiguous().view(B, self.dim_out_v, H // self.stride, W // self.stride)
# B, dim_out, H // stride, W // stride
return attn_out
return out
""" Two alternatives for overlapping windows.
`.unfold().unfold()` is same speed as stride tricks with similar clarity as F.unfold()
if self.stride_tricks:
kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous()
kv = kv.as_strided((
B, self.dim_out_qk + self.dim_out_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks),
stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size))
else:
kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size)
kv = kv.reshape(
B * self.num_heads, self.dim_head_qk + self.dim_head_v, -1, num_blocks).transpose(1, 3)
"""

Loading…
Cancel
Save