pull/645/head
李鑫杰 3 years ago
parent e7f0db8664
commit 00548b8427

@ -39,6 +39,7 @@ from .vision_transformer_hybrid import *
from .vovnet import *
from .xception import *
from .xception_aligned import *
from .twins import *
from .factory import create_model, split_model_name, safe_model_name
from .helpers import load_checkpoint, resume_checkpoint, model_parameters

@ -0,0 +1,625 @@
""" Twins
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
- https://arxiv.org/pdf/2104.13840.pdf
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below
"""
# --------------------------------------------------------
# Twins
# Copyright (c) 2021 Meituan
# Licensed under The Apache 2.0 License [see LICENSE for details]
# Written by Xinjie Li, Xiangxiang Chu
# --------------------------------------------------------
import logging
import math
from copy import deepcopy
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .layers import Mlp, DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .vision_transformer import _cfg
from .vision_transformer import Block as TimmBlock
from .vision_transformer import Attention as TimmAttention
from .helpers import build_model_with_cfg, overlay_external_default_cfg
from .vision_transformer import checkpoint_filter_fn, _init_vit_weights
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'twins_pcpvt_small': _cfg(
url='https://s3plus.meituan.net/v1/mss_9240d97c6bf34ab1b78859c3c2a2a3e4/automl-model-zoo/models/twins/pcpvt_small.pth',
),
'twins_pcpvt_base': _cfg(
url='https://s3plus.meituan.net/v1/mss_9240d97c6bf34ab1b78859c3c2a2a3e4/automl-model-zoo/models/twins/pcpvt_base.pth',
),
'twins_pcpvt_large': _cfg(
url='https://s3plus.meituan.net/v1/mss_9240d97c6bf34ab1b78859c3c2a2a3e4/automl-model-zoo/models/twins/pcpvt_large.pth',
),
'twins_svt_small': _cfg(
url='https://s3plus.meituan.net/v1/mss_9240d97c6bf34ab1b78859c3c2a2a3e4/automl-model-zoo/models/twins/alt_gvt_small.pth',
),
'twins_svt_base': _cfg(
url='https://s3plus.meituan.net/v1/mss_9240d97c6bf34ab1b78859c3c2a2a3e4/automl-model-zoo/models/twins/alt_gvt_base.pth',
),
'twins_svt_large': _cfg(
url='https://s3plus.meituan.net/v1/mss_9240d97c6bf34ab1b78859c3c2a2a3e4/automl-model-zoo/models/twins/alt_gvt_large.pth',
),
}
class GroupAttention(nn.Module):
"""
LSA: self attention within a group
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., ws=1):
assert ws != 1
super(GroupAttention, self).__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, H, W):
"""
There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
both. You can choose any one, we recommend forward_padding because it's neat. However,
the masking implementation is more reasonable and accurate.
Args:
x:
H:
W:
Returns:
"""
return self.forward_padding(x, H, W)
def forward_mask(self, x, H, W):
B, N, C = x.shape
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
mask = torch.zeros((1, Hp, Wp), device=x.device)
mask[:, -pad_b:, :].fill_(1)
mask[:, :, -pad_r:].fill_(1)
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C
mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h*_w, self.ws*self.ws)
attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0))
qkv = self.qkv(x).reshape(B, _h * _w, self.ws * self.ws, 3, self.num_heads,
C // self.num_heads).permute(3, 0, 1, 4, 2, 5) # n_h, B, _w*_h, nhead, ws*ws, dim
q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head
attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws
attn = attn + attn_mask.unsqueeze(2)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def forward_padding(self, x, H, W):
B, N, C = x.shape
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
qkv = self.qkv(x).reshape(B, _h * _w, self.ws * self.ws, 3, self.num_heads,
C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Attention(nn.Module):
"""
GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class SBlock(TimmBlock):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
super(SBlock, self).__init__(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop,
drop_path, act_layer, norm_layer)
def forward(self, x, H, W):
return super(SBlock, self).forward(x)
class GroupBlock(TimmBlock):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=1):
super(GroupBlock, self).__init__(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop,
drop_path, act_layer, norm_layer)
del self.attn
if ws == 1:
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop, drop, sr_ratio)
else:
self.attn = GroupAttention(dim, num_heads, qkv_bias, qk_scale, attn_drop, drop, ws)
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
# img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
H, W = H // self.patch_size[0], W // self.patch_size[1]
return x, (H, W)
# borrow from PVT https://github.com/whai362/PVT.git
class PyramidVisionTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], block_cls=Block):
super().__init__()
self.num_classes = num_classes
self.depths = depths
# patch_embed
self.patch_embeds = nn.ModuleList()
self.pos_embeds = nn.ParameterList()
self.pos_drops = nn.ModuleList()
self.blocks = nn.ModuleList()
for i in range(len(depths)):
if i == 0:
self.patch_embeds.append(PatchEmbed(img_size, patch_size, in_chans, embed_dims[i]))
else:
self.patch_embeds.append(
# PatchEmbed(img_size // patch_size // 2 ** (i - 1), 2, embed_dims[i - 1], embed_dims[i])
PatchEmbed((img_size[0] // patch_size // 2**(i-1),img_size[1] // patch_size // 2**(i-1)), 2, embed_dims[i - 1], embed_dims[i])
)
patch_num = self.patch_embeds[-1].num_patches + 1 if i == len(embed_dims) - 1 else self.patch_embeds[
-1].num_patches
self.pos_embeds.append(nn.Parameter(torch.zeros(1, patch_num, embed_dims[i])))
self.pos_drops.append(nn.Dropout(p=drop_rate))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
for k in range(len(depths)):
_block = nn.ModuleList([block_cls(
dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[k])
for i in range(depths[k])])
self.blocks.append(_block)
cur += depths[k]
self.norm = norm_layer(embed_dims[-1])
# cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[-1]))
# classification head
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
# init weights
for pos_emb in self.pos_embeds:
trunc_normal_(pos_emb, std=.02)
self.apply(self._init_weights)
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for k in range(len(self.depths)):
for i in range(self.depths[k]):
self.blocks[k][i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[k]
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
for i in range(len(self.depths)):
x, (H, W) = self.patch_embeds[i](x)
if i == len(self.depths) - 1:
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embeds[i]
x = self.pos_drops[i](x)
for blk in self.blocks[i]:
x = blk(x, H, W)
if i < len(self.depths) - 1:
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x = self.norm(x)
return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
# PEG from https://arxiv.org/abs/2102.10882
class PosCNN(nn.Module):
def __init__(self, in_chans, embed_dim=768, s=1):
super(PosCNN, self).__init__()
self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, s, 1, bias=True, groups=embed_dim), )
self.s = s
def forward(self, x, H, W):
B, N, C = x.shape
feat_token = x
cnn_feat = feat_token.transpose(1, 2).view(B, C, H, W)
if self.s == 1:
x = self.proj(cnn_feat) + cnn_feat
else:
x = self.proj(cnn_feat)
x = x.flatten(2).transpose(1, 2)
return x
def no_weight_decay(self):
return ['proj.%d.weight' % i for i in range(4)]
class CPVTV2(PyramidVisionTransformer):
"""
Use useful results from CPVT. PEG and GAP.
Therefore, cls token is no longer required.
PEG is used to encode the absolute position on the fly, which greatly affects the performance when input resolution
changes during the training (such as segmentation, detection)
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], block_cls=Block):
super(CPVTV2, self).__init__(img_size, patch_size, in_chans, num_classes, embed_dims, num_heads, mlp_ratios,
qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, depths,
sr_ratios, block_cls)
del self.pos_embeds
del self.cls_token
self.pos_block = nn.ModuleList(
[PosCNN(embed_dim, embed_dim) for embed_dim in embed_dims]
)
self.apply(self._init_weights)
def _init_weights(self, m):
import math
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def no_weight_decay(self):
return set(['cls_token'] + ['pos_block.' + n for n, p in self.pos_block.named_parameters()])
def forward_features(self, x):
B = x.shape[0]
for i in range(len(self.depths)):
x, (H, W) = self.patch_embeds[i](x)
x = self.pos_drops[i](x)
for j, blk in enumerate(self.blocks[i]):
x = blk(x, H, W)
if j == 0:
x = self.pos_block[i](x, H, W) # PEG here
if i < len(self.depths) - 1:
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x = self.norm(x)
return x.mean(dim=1) # GAP here
class Twins_PCPVT(CPVTV2):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256],
num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
depths=[4, 4, 4], sr_ratios=[4, 2, 1], block_cls=SBlock):
super(Twins_PCPVT, self).__init__(img_size, patch_size, in_chans, num_classes, embed_dims, num_heads,
mlp_ratios, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate,
norm_layer, depths, sr_ratios, block_cls)
class Twins_SVT(Twins_PCPVT):
"""
alias Twins-SVT
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256],
num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
depths=[4, 4, 4], sr_ratios=[4, 2, 1], block_cls=GroupBlock, wss=[7, 7, 7]):
super(Twins_SVT, self).__init__(img_size, patch_size, in_chans, num_classes, embed_dims, num_heads,
mlp_ratios, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate,
norm_layer, depths, sr_ratios, block_cls)
del self.blocks
self.wss = wss
# transformer encoder
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
self.blocks = nn.ModuleList()
for k in range(len(depths)):
_block = nn.ModuleList([block_cls(
dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[k], ws=1 if i % 2 == 1 else wss[k]) for i in range(depths[k])])
self.blocks.append(_block)
cur += depths[k]
self.apply(self._init_weights)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def _create_twins_svt(variant, pretrained=False, default_cfg=None, **kwargs):
if default_cfg is None:
default_cfg = deepcopy(default_cfgs[variant])
overlay_external_default_cfg(default_cfg, kwargs)
default_num_classes = default_cfg['num_classes']
default_img_size = default_cfg['input_size'][-2:]
num_classes = kwargs.pop('num_classes', default_num_classes)
img_size = kwargs.pop('img_size', default_img_size)
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(
Twins_SVT, variant, pretrained,
default_cfg=default_cfg,
img_size=img_size,
num_classes=num_classes,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
def _create_twins_pcpvt(variant, pretrained=False, default_cfg=None, **kwargs):
if default_cfg is None:
default_cfg = deepcopy(default_cfgs[variant])
overlay_external_default_cfg(default_cfg, kwargs)
default_num_classes = default_cfg['num_classes']
default_img_size = default_cfg['input_size'][-2:]
num_classes = kwargs.pop('num_classes', default_num_classes)
img_size = kwargs.pop('img_size', default_img_size)
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(
CPVTV2, variant, pretrained,
default_cfg=default_cfg,
img_size=img_size,
num_classes=num_classes,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def twins_pcpvt_small(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
**kwargs)
return _create_twins_pcpvt('twins_pcpvt_small', pretrained=pretrained, **model_kwargs)
@register_model
def twins_pcpvt_base(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
**kwargs)
return _create_twins_pcpvt('twins_pcpvt_base', pretrained=pretrained, **model_kwargs)
@register_model
def twins_pcpvt_large(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
**kwargs)
return _create_twins_pcpvt('twins_pcpvt_large', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_small(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1],
**kwargs)
return _create_twins_svt('twins_svt_small', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_base(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1],
**kwargs)
return _create_twins_svt('twins_svt_base', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_large(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1],
**kwargs)
return _create_twins_svt('twins_svt_large', pretrained=pretrained, **model_kwargs)
Loading…
Cancel
Save