You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
18 KiB
460 lines
18 KiB
4 years ago
|
#!/usr/bin/env python3
|
||
|
""" Model Benchmark Script
|
||
|
|
||
|
An inference and train step benchmark script for timm models.
|
||
|
|
||
|
Hacked together by Ross Wightman (https://github.com/rwightman)
|
||
|
"""
|
||
|
import argparse
|
||
|
import os
|
||
|
import csv
|
||
|
import json
|
||
|
import time
|
||
|
import logging
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.parallel
|
||
|
from collections import OrderedDict
|
||
|
from contextlib import suppress
|
||
|
from functools import partial
|
||
|
|
||
|
from timm.models import create_model, is_model, list_models
|
||
|
from timm.optim import create_optimizer
|
||
|
from timm.data import resolve_data_config
|
||
|
from timm.utils import AverageMeter, setup_default_logging
|
||
|
|
||
|
|
||
|
has_apex = False
|
||
|
try:
|
||
|
from apex import amp
|
||
|
has_apex = True
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
has_native_amp = False
|
||
|
try:
|
||
|
if getattr(torch.cuda.amp, 'autocast') is not None:
|
||
|
has_native_amp = True
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
|
||
|
torch.backends.cudnn.benchmark = True
|
||
|
_logger = logging.getLogger('validate')
|
||
|
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='PyTorch Benchmark')
|
||
|
|
||
|
# benchmark specific args
|
||
|
parser.add_argument('--bench', default='both', type=str,
|
||
|
help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'inference'")
|
||
|
parser.add_argument('--detail', action='store_true', default=False,
|
||
|
help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False')
|
||
|
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
|
||
|
help='Output csv file for validation results (summary)')
|
||
|
|
||
|
# common inference / train args
|
||
|
parser.add_argument('--model', '-m', metavar='NAME', default='resnet50',
|
||
|
help='model architecture (default: resnet50)')
|
||
|
parser.add_argument('-b', '--batch-size', default=256, type=int,
|
||
|
metavar='N', help='mini-batch size (default: 256)')
|
||
|
parser.add_argument('--img-size', default=None, type=int,
|
||
|
metavar='N', help='Input image dimension, uses model default if empty')
|
||
|
parser.add_argument('--input-size', default=None, nargs=3, type=int,
|
||
|
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
|
||
|
parser.add_argument('--num-classes', type=int, default=None,
|
||
|
help='Number classes in dataset')
|
||
|
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
|
||
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
|
||
|
parser.add_argument('--channels-last', action='store_true', default=False,
|
||
|
help='Use channels_last memory layout')
|
||
|
parser.add_argument('--amp', action='store_true', default=False,
|
||
|
help='Use AMP mixed precision. Defaults to Apex, fallback to native Torch AMP.')
|
||
|
parser.add_argument('--apex-amp', action='store_true', default=False,
|
||
|
help='Use NVIDIA Apex AMP mixed precision')
|
||
|
parser.add_argument('--native-amp', action='store_true', default=False,
|
||
|
help='Use Native Torch AMP mixed precision')
|
||
|
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
|
||
|
help='convert model torchscript for inference')
|
||
|
|
||
|
|
||
|
# train optimizer parameters
|
||
|
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
|
||
|
help='Optimizer (default: "sgd"')
|
||
|
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
|
||
|
help='Optimizer Epsilon (default: None, use opt default)')
|
||
|
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
|
||
|
help='Optimizer Betas (default: None, use opt default)')
|
||
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
||
|
help='Optimizer momentum (default: 0.9)')
|
||
|
parser.add_argument('--weight-decay', type=float, default=0.0001,
|
||
|
help='weight decay (default: 0.0001)')
|
||
|
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
|
||
|
help='Clip gradient norm (default: None, no clipping)')
|
||
|
parser.add_argument('--clip-mode', type=str, default='norm',
|
||
|
help='Gradient clipping mode. One of ("norm", "value", "agc")')
|
||
|
|
||
|
|
||
|
# model regularization / loss params that impact model or loss fn
|
||
|
parser.add_argument('--smoothing', type=float, default=0.1,
|
||
|
help='Label smoothing (default: 0.1)')
|
||
|
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
|
||
|
help='Dropout rate (default: 0.)')
|
||
|
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
|
||
|
help='Drop path rate (default: None)')
|
||
|
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
|
||
|
help='Drop block rate (default: None)')
|
||
|
|
||
|
|
||
|
def timestamp(sync=False):
|
||
|
return time.perf_counter()
|
||
|
|
||
|
|
||
|
def cuda_timestamp(sync=False, device=None):
|
||
|
if sync:
|
||
|
torch.cuda.synchronize(device=device)
|
||
|
return time.perf_counter()
|
||
|
|
||
|
|
||
|
def count_params(model):
|
||
|
return sum([m.numel() for m in model.parameters()])
|
||
|
|
||
|
|
||
|
class BenchmarkRunner:
|
||
|
def __init__(self, model_name, detail=False, device='cuda', torchscript=False, **kwargs):
|
||
|
self.model_name = model_name
|
||
|
self.detail = detail
|
||
|
self.device = device
|
||
|
self.model = create_model(
|
||
|
model_name,
|
||
|
num_classes=kwargs.pop('num_classes', None),
|
||
|
in_chans=3,
|
||
|
global_pool=kwargs.pop('gp', 'fast'),
|
||
|
scriptable=torchscript).to(device=self.device)
|
||
|
self.num_classes = self.model.num_classes
|
||
|
self.param_count = count_params(self.model)
|
||
|
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count))
|
||
|
|
||
|
self.channels_last = kwargs.pop('channels_last', False)
|
||
|
self.use_amp = kwargs.pop('use_amp', '')
|
||
|
self.amp_autocast = torch.cuda.amp.autocast if self.use_amp == 'native' else suppress
|
||
|
if torchscript:
|
||
|
self.model = torch.jit.script(self.model)
|
||
|
|
||
|
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=True)
|
||
|
self.input_size = data_config['input_size']
|
||
|
self.batch_size = kwargs.pop('batch_size', 256)
|
||
|
|
||
|
self.example_inputs = None
|
||
|
self.num_warm_iter = 10
|
||
|
self.num_bench_iter = 50
|
||
|
self.log_freq = 10
|
||
|
if 'cuda' in self.device:
|
||
|
self.time_fn = partial(cuda_timestamp, device=self.device)
|
||
|
else:
|
||
|
self.time_fn = timestamp
|
||
|
|
||
|
def _init_input(self):
|
||
|
self.example_inputs = torch.randn((self.batch_size,) + self.input_size, device=self.device)
|
||
|
if self.channels_last:
|
||
|
self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last)
|
||
|
|
||
|
|
||
|
class InferenceBenchmarkRunner(BenchmarkRunner):
|
||
|
|
||
|
def __init__(self, model_name, device='cuda', torchscript=False, **kwargs):
|
||
|
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
|
||
|
self.model.eval()
|
||
|
if self.use_amp == 'apex':
|
||
|
self.model = amp.initialize(self.model, opt_level='O1')
|
||
|
if self.channels_last:
|
||
|
self.model = self.model.to(memory_format=torch.channels_last)
|
||
|
|
||
|
def run(self):
|
||
|
def _step():
|
||
|
t_step_start = self.time_fn()
|
||
|
with self.amp_autocast():
|
||
|
output = self.model(self.example_inputs)
|
||
|
t_step_end = self.time_fn(True)
|
||
|
return t_step_end - t_step_start
|
||
|
|
||
|
_logger.info(
|
||
|
f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
|
||
|
f'input size {self.input_size} and batch size {self.batch_size}.')
|
||
|
|
||
|
with torch.no_grad():
|
||
|
self._init_input()
|
||
|
|
||
|
for _ in range(self.num_warm_iter):
|
||
|
_step()
|
||
|
|
||
|
total_step = 0.
|
||
|
num_samples = 0
|
||
|
t_run_start = self.time_fn()
|
||
|
for i in range(self.num_bench_iter):
|
||
|
delta_fwd = _step()
|
||
|
total_step += delta_fwd
|
||
|
num_samples += self.batch_size
|
||
|
if (i + 1) % self.log_freq == 0:
|
||
|
_logger.info(
|
||
|
f"Infer [{i + 1}/{self.num_bench_iter}]."
|
||
|
f" {num_samples / total_step:0.2f} samples/sec."
|
||
|
f" {1000 * total_step / num_samples:0.3f} ms/sample.")
|
||
|
t_run_end = self.time_fn(True)
|
||
|
t_run_elapsed = t_run_end - t_run_start
|
||
|
|
||
|
results = dict(
|
||
|
samples_per_sec=round(num_samples / t_run_elapsed, 2),
|
||
|
step_time=round(1000 * total_step / num_samples, 3),
|
||
|
batch_size=self.batch_size,
|
||
|
param_count=round(self.param_count / 1e6, 2),
|
||
|
)
|
||
|
|
||
|
_logger.info(
|
||
|
f"Inference benchmark of {self.model_name} done. "
|
||
|
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample")
|
||
|
|
||
|
return results
|
||
|
|
||
|
|
||
|
class TrainBenchmarkRunner(BenchmarkRunner):
|
||
|
|
||
|
def __init__(self, model_name, device='cuda', torchscript=False, **kwargs):
|
||
|
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
|
||
|
self.model.train()
|
||
|
|
||
|
if kwargs.pop('smoothing', 0) > 0:
|
||
|
self.loss = nn.CrossEntropyLoss().to(self.device)
|
||
|
else:
|
||
|
self.loss = nn.CrossEntropyLoss().to(self.device)
|
||
|
self.target_shape = tuple()
|
||
|
|
||
|
self.optimizer = create_optimizer(
|
||
|
self.model,
|
||
|
opt_name=kwargs.pop('opt', 'sgd'),
|
||
|
lr=kwargs.pop('lr', 1e-4))
|
||
|
|
||
|
if self.use_amp == 'apex':
|
||
|
self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O1')
|
||
|
if self.channels_last:
|
||
|
self.model = self.model.to(memory_format=torch.channels_last)
|
||
|
|
||
|
def _gen_target(self, batch_size):
|
||
|
return torch.empty(
|
||
|
(batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes)
|
||
|
|
||
|
def run(self):
|
||
|
def _step(detail=False):
|
||
|
self.optimizer.zero_grad() # can this be ignored?
|
||
|
t_start = self.time_fn()
|
||
|
t_fwd_end = t_start
|
||
|
t_bwd_end = t_start
|
||
|
with self.amp_autocast():
|
||
|
output = self.model(self.example_inputs)
|
||
|
if isinstance(output, tuple):
|
||
|
output = output[0]
|
||
|
if detail:
|
||
|
t_fwd_end = self.time_fn(True)
|
||
|
target = self._gen_target(output.shape[0])
|
||
|
self.loss(output, target).backward()
|
||
|
if detail:
|
||
|
t_bwd_end = self.time_fn(True)
|
||
|
self.optimizer.step()
|
||
|
t_end = self.time_fn(True)
|
||
|
if detail:
|
||
|
delta_fwd = t_fwd_end - t_start
|
||
|
delta_bwd = t_bwd_end - t_fwd_end
|
||
|
delta_opt = t_end - t_bwd_end
|
||
|
return delta_fwd, delta_bwd, delta_opt
|
||
|
else:
|
||
|
delta_step = t_end - t_start
|
||
|
return delta_step
|
||
|
|
||
|
_logger.info(
|
||
|
f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
|
||
|
f'input size {self.input_size} and batch size {self.batch_size}.')
|
||
|
|
||
|
self._init_input()
|
||
|
|
||
|
for _ in range(self.num_warm_iter):
|
||
|
_step()
|
||
|
|
||
|
t_run_start = self.time_fn()
|
||
|
if self.detail:
|
||
|
total_fwd = 0.
|
||
|
total_bwd = 0.
|
||
|
total_opt = 0.
|
||
|
num_samples = 0
|
||
|
for i in range(self.num_bench_iter):
|
||
|
delta_fwd, delta_bwd, delta_opt = _step(True)
|
||
|
num_samples += self.batch_size
|
||
|
total_fwd += delta_fwd
|
||
|
total_bwd += delta_bwd
|
||
|
total_opt += delta_opt
|
||
|
if (i + 1) % self.log_freq == 0:
|
||
|
total_step = total_fwd + total_bwd + total_opt
|
||
|
_logger.info(
|
||
|
f"Train [{i + 1}/{self.num_bench_iter}]."
|
||
|
f" {num_samples / total_step:0.2f} samples/sec."
|
||
|
f" {1000 * total_fwd / num_samples:0.3f} ms/sample fwd,"
|
||
|
f" {1000 * total_bwd / num_samples:0.3f} ms/sample bwd,"
|
||
|
f" {1000 * total_opt / num_samples:0.3f} ms/sample opt."
|
||
|
)
|
||
|
total_step = total_fwd + total_bwd + total_opt
|
||
|
t_run_elapsed = self.time_fn() - t_run_start
|
||
|
results = dict(
|
||
|
samples_per_sec=round(num_samples / t_run_elapsed, 2),
|
||
|
step_time=round(1000 * total_step / num_samples, 3),
|
||
|
fwd_time=round(1000 * total_fwd / num_samples, 3),
|
||
|
bwd_time=round(1000 * total_bwd / num_samples, 3),
|
||
|
opt_time=round(1000 * total_opt / num_samples, 3),
|
||
|
batch_size=self.batch_size,
|
||
|
param_count=round(self.param_count / 1e6, 2),
|
||
|
)
|
||
|
else:
|
||
|
total_step = 0.
|
||
|
num_samples = 0
|
||
|
for i in range(self.num_bench_iter):
|
||
|
delta_step = _step(False)
|
||
|
num_samples += self.batch_size
|
||
|
total_step += delta_step
|
||
|
if (i + 1) % self.log_freq == 0:
|
||
|
_logger.info(
|
||
|
f"Train [{i + 1}/{self.num_bench_iter}]."
|
||
|
f" {num_samples / total_step:0.2f} samples/sec."
|
||
|
f" {1000 * total_step / num_samples:0.3f} ms/sample.")
|
||
|
t_run_elapsed = self.time_fn() - t_run_start
|
||
|
results = dict(
|
||
|
samples_per_sec=round(num_samples / t_run_elapsed, 2),
|
||
|
step_time=round(1000 * total_step / num_samples, 3),
|
||
|
batch_size=self.batch_size,
|
||
|
param_count=round(self.param_count / 1e6, 2),
|
||
|
)
|
||
|
|
||
|
_logger.info(
|
||
|
f"Train benchmark of {self.model_name} done. "
|
||
|
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample")
|
||
|
|
||
|
return results
|
||
|
|
||
|
|
||
|
def decay_batch_exp(batch_size, factor=0.5, divisor=16):
|
||
|
out_batch_size = batch_size * factor
|
||
|
if out_batch_size > divisor:
|
||
|
out_batch_size = (out_batch_size + 1) // divisor * divisor
|
||
|
else:
|
||
|
out_batch_size = batch_size - 1
|
||
|
return max(0, int(out_batch_size))
|
||
|
|
||
|
|
||
|
def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs):
|
||
|
batch_size = initial_batch_size
|
||
|
results = dict()
|
||
|
while batch_size >= 1:
|
||
|
try:
|
||
|
bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs)
|
||
|
results = bench.run()
|
||
|
return results
|
||
|
except RuntimeError as e:
|
||
|
torch.cuda.empty_cache()
|
||
|
batch_size = decay_batch_exp(batch_size)
|
||
|
print(f'Reducing batch size to {batch_size}')
|
||
|
return results
|
||
|
|
||
|
|
||
|
def benchmark(args):
|
||
|
if args.amp:
|
||
|
if has_native_amp:
|
||
|
args.native_amp = True
|
||
|
elif has_apex:
|
||
|
args.apex_amp = True
|
||
|
else:
|
||
|
_logger.warning("Neither APEX or Native Torch AMP is available.")
|
||
|
if args.native_amp:
|
||
|
args.use_amp = 'native'
|
||
|
_logger.info('Benchmarking in mixed precision with native PyTorch AMP.')
|
||
|
elif args.apex_amp:
|
||
|
args.use_amp = 'apex'
|
||
|
_logger.info('Benchmarking in mixed precision with NVIDIA APEX AMP.')
|
||
|
else:
|
||
|
args.use_amp = ''
|
||
|
_logger.info('Benchmarking in float32. AMP not enabled.')
|
||
|
|
||
|
bench_kwargs = vars(args).copy()
|
||
|
model = bench_kwargs.pop('model')
|
||
|
batch_size = bench_kwargs.pop('batch_size')
|
||
|
|
||
|
bench_fns = (InferenceBenchmarkRunner,)
|
||
|
prefixes = ('infer',)
|
||
|
if args.bench == 'both':
|
||
|
bench_fns = (
|
||
|
InferenceBenchmarkRunner,
|
||
|
TrainBenchmarkRunner
|
||
|
)
|
||
|
prefixes = ('infer', 'train')
|
||
|
elif args.bench == 'train':
|
||
|
bench_fns = TrainBenchmarkRunner,
|
||
|
prefixes = 'train',
|
||
|
|
||
|
model_results = OrderedDict(model=model)
|
||
|
for prefix, bench_fn in zip(prefixes, bench_fns):
|
||
|
run_results = _try_run(model, bench_fn, initial_batch_size=batch_size, bench_kwargs=bench_kwargs)
|
||
|
if prefix:
|
||
|
run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()}
|
||
|
model_results.update(run_results)
|
||
|
param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0))
|
||
|
model_results.setdefault('param_count', param_count)
|
||
|
model_results.pop('train_param_count', 0)
|
||
|
return model_results
|
||
|
|
||
|
|
||
|
def main():
|
||
|
setup_default_logging()
|
||
|
args = parser.parse_args()
|
||
|
model_cfgs = []
|
||
|
model_names = []
|
||
|
|
||
|
if args.model == 'all':
|
||
|
# validate all models in a list of names with pretrained checkpoints
|
||
|
args.pretrained = True
|
||
|
model_names = list_models(pretrained=True, exclude_filters=['*in21k'])
|
||
|
model_cfgs = [(n, None) for n in model_names]
|
||
|
elif not is_model(args.model):
|
||
|
# model name doesn't exist, try as wildcard filter
|
||
|
model_names = list_models(args.model)
|
||
|
model_cfgs = [(n, None) for n in model_names]
|
||
|
|
||
|
if len(model_cfgs):
|
||
|
results_file = args.results_file or './benchmark.csv'
|
||
|
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
|
||
|
results = []
|
||
|
try:
|
||
|
for m, _ in model_cfgs:
|
||
|
args.model = m
|
||
|
r = benchmark(args)
|
||
|
results.append(r)
|
||
|
except KeyboardInterrupt as e:
|
||
|
pass
|
||
|
sort_key = 'train_samples_per_sec' if 'train' in args.bench else 'infer_samples_per_sec'
|
||
|
results = sorted(results, key=lambda x: x[sort_key], reverse=True)
|
||
|
if len(results):
|
||
|
write_results(results_file, results)
|
||
|
|
||
|
import json
|
||
|
json_str = json.dumps(results, indent=4)
|
||
|
print(json_str)
|
||
|
else:
|
||
|
benchmark(args)
|
||
|
|
||
|
|
||
|
def write_results(results_file, results):
|
||
|
with open(results_file, mode='w') as cf:
|
||
|
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
|
||
|
dw.writeheader()
|
||
|
for r in results:
|
||
|
dw.writerow(r)
|
||
|
cf.flush()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|