|
|
|
""" PoolFormer implementation
|
|
|
|
|
|
|
|
Paper: `PoolFormer: MetaFormer is Actually What You Need for Vision` - https://arxiv.org/abs/2111.11418
|
|
|
|
|
|
|
|
Code adapted from official impl at https://github.com/sail-sg/poolformer, original copyright in comment below
|
|
|
|
|
|
|
|
Modifications and additions for timm by / Copyright 2022, Ross Wightman
|
|
|
|
"""
|
|
|
|
# Copyright 2021 Garena Online Private Limited
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import copy
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import build_model_with_cfg, checkpoint_seq
|
|
|
|
from .layers import DropPath, trunc_normal_, to_2tuple, ConvMlp, GroupNorm1
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'crop_pct': .95, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = dict(
|
|
|
|
poolformer_s12=_cfg(
|
|
|
|
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s12.pth.tar',
|
|
|
|
crop_pct=0.9),
|
|
|
|
poolformer_s24=_cfg(
|
|
|
|
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s24.pth.tar',
|
|
|
|
crop_pct=0.9),
|
|
|
|
poolformer_s36=_cfg(
|
|
|
|
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s36.pth.tar',
|
|
|
|
crop_pct=0.9),
|
|
|
|
poolformer_m36=_cfg(
|
|
|
|
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m36.pth.tar',
|
|
|
|
crop_pct=0.95),
|
|
|
|
poolformer_m48=_cfg(
|
|
|
|
url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m48.pth.tar',
|
|
|
|
crop_pct=0.95),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
|
|
""" Patch Embedding that is implemented by a layer of conv.
|
|
|
|
Input: tensor in shape [B, C, H, W]
|
|
|
|
Output: tensor in shape [B, C, H/stride, W/stride]
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_chs=3, embed_dim=768, patch_size=16, stride=16, padding=0, norm_layer=None):
|
|
|
|
super().__init__()
|
|
|
|
patch_size = to_2tuple(patch_size)
|
|
|
|
stride = to_2tuple(stride)
|
|
|
|
padding = to_2tuple(padding)
|
|
|
|
self.proj = nn.Conv2d(in_chs, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
|
|
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Pooling(nn.Module):
|
|
|
|
def __init__(self, pool_size=3):
|
|
|
|
super().__init__()
|
|
|
|
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.pool(x) - x
|
|
|
|
|
|
|
|
|
|
|
|
class PoolFormerBlock(nn.Module):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
dim: embedding dim
|
|
|
|
pool_size: pooling size
|
|
|
|
mlp_ratio: mlp expansion ratio
|
|
|
|
act_layer: activation
|
|
|
|
norm_layer: normalization
|
|
|
|
drop: dropout rate
|
|
|
|
drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382
|
|
|
|
use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, pool_size=3, mlp_ratio=4.,
|
|
|
|
act_layer=nn.GELU, norm_layer=GroupNorm1,
|
|
|
|
drop=0., drop_path=0., layer_scale_init_value=1e-5):
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.token_mixer = Pooling(pool_size=pool_size)
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.mlp = ConvMlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
if layer_scale_init_value:
|
|
|
|
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim))
|
|
|
|
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim))
|
|
|
|
else:
|
|
|
|
self.layer_scale_1 = None
|
|
|
|
self.layer_scale_2 = None
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.layer_scale_1 is not None:
|
|
|
|
x = x + self.drop_path1(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.token_mixer(self.norm1(x)))
|
|
|
|
x = x + self.drop_path2(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
|
|
|
|
else:
|
|
|
|
x = x + self.drop_path1(self.token_mixer(self.norm1(x)))
|
|
|
|
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def basic_blocks(
|
|
|
|
dim, index, layers,
|
|
|
|
pool_size=3, mlp_ratio=4.,
|
|
|
|
act_layer=nn.GELU, norm_layer=GroupNorm1,
|
|
|
|
drop_rate=.0, drop_path_rate=0.,
|
|
|
|
layer_scale_init_value=1e-5,
|
|
|
|
):
|
|
|
|
""" generate PoolFormer blocks for a stage """
|
|
|
|
blocks = []
|
|
|
|
for block_idx in range(layers[index]):
|
|
|
|
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
|
|
|
|
blocks.append(PoolFormerBlock(
|
|
|
|
dim, pool_size=pool_size, mlp_ratio=mlp_ratio,
|
|
|
|
act_layer=act_layer, norm_layer=norm_layer,
|
|
|
|
drop=drop_rate, drop_path=block_dpr,
|
|
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
|
|
))
|
|
|
|
blocks = nn.Sequential(*blocks)
|
|
|
|
return blocks
|
|
|
|
|
|
|
|
|
|
|
|
class PoolFormer(nn.Module):
|
|
|
|
""" PoolFormer
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
layers,
|
|
|
|
embed_dims=(64, 128, 320, 512),
|
|
|
|
mlp_ratios=(4, 4, 4, 4),
|
|
|
|
downsamples=(True, True, True, True),
|
|
|
|
pool_size=3,
|
|
|
|
in_chans=3,
|
|
|
|
num_classes=1000,
|
|
|
|
global_pool='avg',
|
|
|
|
norm_layer=GroupNorm1,
|
|
|
|
act_layer=nn.GELU,
|
|
|
|
in_patch_size=7,
|
|
|
|
in_stride=4,
|
|
|
|
in_pad=2,
|
|
|
|
down_patch_size=3,
|
|
|
|
down_stride=2,
|
|
|
|
down_pad=1,
|
|
|
|
drop_rate=0., drop_path_rate=0.,
|
|
|
|
layer_scale_init_value=1e-5,
|
|
|
|
**kwargs):
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_features = embed_dims[-1]
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
|
|
patch_size=in_patch_size, stride=in_stride, padding=in_pad,
|
|
|
|
in_chs=in_chans, embed_dim=embed_dims[0])
|
|
|
|
|
|
|
|
# set the main block in network
|
|
|
|
network = []
|
|
|
|
for i in range(len(layers)):
|
|
|
|
network.append(basic_blocks(
|
|
|
|
embed_dims[i], i, layers,
|
|
|
|
pool_size=pool_size, mlp_ratio=mlp_ratios[i],
|
|
|
|
act_layer=act_layer, norm_layer=norm_layer,
|
|
|
|
drop_rate=drop_rate, drop_path_rate=drop_path_rate,
|
|
|
|
layer_scale_init_value=layer_scale_init_value)
|
|
|
|
)
|
|
|
|
if i < len(layers) - 1 and (downsamples[i] or embed_dims[i] != embed_dims[i + 1]):
|
|
|
|
# downsampling between stages
|
|
|
|
network.append(PatchEmbed(
|
|
|
|
in_chs=embed_dims[i], embed_dim=embed_dims[i + 1],
|
|
|
|
patch_size=down_patch_size, stride=down_stride, padding=down_pad)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.network = nn.Sequential(*network)
|
|
|
|
self.norm = norm_layer(self.num_features)
|
|
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
|
|
|
|
# init for classification
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
return dict(
|
|
|
|
stem=r'^patch_embed', # stem and embed
|
|
|
|
blocks=[
|
|
|
|
(r'^network\.(\d+).*\.proj', (99999,)),
|
|
|
|
(r'^network\.(\d+)', None) if coarse else (r'^network\.(\d+)\.(\d+)', None),
|
|
|
|
(r'^norm', (99999,))
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
self.grad_checkpointing = enable
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
if global_pool is not None:
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
x = self.network(x)
|
|
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
if self.global_pool == 'avg':
|
|
|
|
x = x.mean([-2, -1])
|
|
|
|
return x if pre_logits else self.head(x)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _create_poolformer(variant, pretrained=False, **kwargs):
|
|
|
|
if kwargs.get('features_only', None):
|
|
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
|
|
model = build_model_with_cfg(PoolFormer, variant, pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def poolformer_s12(pretrained=False, **kwargs):
|
|
|
|
""" PoolFormer-S12 model, Params: 12M """
|
|
|
|
model = _create_poolformer('poolformer_s12', pretrained=pretrained, layers=(2, 2, 6, 2), **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def poolformer_s24(pretrained=False, **kwargs):
|
|
|
|
""" PoolFormer-S24 model, Params: 21M """
|
|
|
|
model = _create_poolformer('poolformer_s24', pretrained=pretrained, layers=(4, 4, 12, 4), **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def poolformer_s36(pretrained=False, **kwargs):
|
|
|
|
""" PoolFormer-S36 model, Params: 31M """
|
|
|
|
model = _create_poolformer(
|
|
|
|
'poolformer_s36', pretrained=pretrained, layers=(6, 6, 18, 6), layer_scale_init_value=1e-6, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def poolformer_m36(pretrained=False, **kwargs):
|
|
|
|
""" PoolFormer-M36 model, Params: 56M """
|
|
|
|
layers = (6, 6, 18, 6)
|
|
|
|
embed_dims = (96, 192, 384, 768)
|
|
|
|
model = _create_poolformer(
|
|
|
|
'poolformer_m36', pretrained=pretrained, layers=layers, embed_dims=embed_dims,
|
|
|
|
layer_scale_init_value=1e-6, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def poolformer_m48(pretrained=False, **kwargs):
|
|
|
|
""" PoolFormer-M48 model, Params: 73M """
|
|
|
|
layers = (8, 8, 24, 8)
|
|
|
|
embed_dims = (96, 192, 384, 768)
|
|
|
|
model = _create_poolformer(
|
|
|
|
'poolformer_m48', pretrained=pretrained, layers=layers, embed_dims=embed_dims,
|
|
|
|
layer_scale_init_value=1e-6, **kwargs)
|
|
|
|
return model
|