|
|
|
from __future__ import absolute_import
|
|
|
|
|
|
|
|
import random
|
|
|
|
import math
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'):
|
|
|
|
# NOTE I've seen CUDA illegal memory access errors being caused by the normal_()
|
|
|
|
# paths, flip the order so normal is run on CPU if this becomes a problem
|
|
|
|
# ie torch.empty(patch_size, dtype=dtype).normal_().to(device=device)
|
|
|
|
if per_pixel:
|
|
|
|
return torch.empty(
|
|
|
|
patch_size, dtype=dtype, device=device).normal_()
|
|
|
|
elif rand_color:
|
|
|
|
return torch.empty((patch_size[0], 1, 1), dtype=dtype, device=device).normal_()
|
|
|
|
else:
|
|
|
|
return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
class RandomErasing:
|
|
|
|
""" Randomly selects a rectangle region in an image and erases its pixels.
|
|
|
|
'Random Erasing Data Augmentation' by Zhong et al.
|
|
|
|
See https://arxiv.org/pdf/1708.04896.pdf
|
|
|
|
|
|
|
|
This variant of RandomErasing is intended to be applied to either a batch
|
|
|
|
or single image tensor after it has been normalized by dataset mean and std.
|
|
|
|
Args:
|
|
|
|
probability: The probability that the Random Erasing operation will be performed.
|
|
|
|
sl: Minimum proportion of erased area against input image.
|
|
|
|
sh: Maximum proportion of erased area against input image.
|
|
|
|
min_aspect: Minimum aspect ratio of erased area.
|
|
|
|
mode: pixel color mode, one of 'const', 'rand', or 'pixel'
|
|
|
|
'const' - erase block is constant color of 0 for all channels
|
|
|
|
'rand' - erase block is same per-cannel random (normal) color
|
|
|
|
'pixel' - erase block is per-pixel random (normal) color
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
probability=0.5, sl=0.02, sh=1/3, min_aspect=0.3,
|
|
|
|
mode='const', device='cuda'):
|
|
|
|
self.probability = probability
|
|
|
|
self.sl = sl
|
|
|
|
self.sh = sh
|
|
|
|
self.min_aspect = min_aspect
|
|
|
|
mode = mode.lower()
|
|
|
|
self.rand_color = False
|
|
|
|
self.per_pixel = False
|
|
|
|
if mode == 'rand':
|
|
|
|
self.rand_color = True # per block random normal
|
|
|
|
elif mode == 'pixel':
|
|
|
|
self.per_pixel = True # per pixel random normal
|
|
|
|
else:
|
|
|
|
assert not mode or mode == 'const'
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
def _erase(self, img, chan, img_h, img_w, dtype):
|
|
|
|
if random.random() > self.probability:
|
|
|
|
return
|
|
|
|
area = img_h * img_w
|
|
|
|
for attempt in range(100):
|
|
|
|
target_area = random.uniform(self.sl, self.sh) * area
|
|
|
|
aspect_ratio = random.uniform(self.min_aspect, 1 / self.min_aspect)
|
|
|
|
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
|
|
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
|
|
if w < img_w and h < img_h:
|
|
|
|
top = random.randint(0, img_h - h)
|
|
|
|
left = random.randint(0, img_w - w)
|
|
|
|
img[:, top:top + h, left:left + w] = _get_pixels(
|
|
|
|
self.per_pixel, self.rand_color, (chan, h, w),
|
|
|
|
dtype=dtype, device=self.device)
|
|
|
|
break
|
|
|
|
|
|
|
|
def __call__(self, input):
|
|
|
|
if len(input.size()) == 3:
|
|
|
|
self._erase(input, *input.size(), input.dtype)
|
|
|
|
else:
|
|
|
|
batch_size, chan, img_h, img_w = input.size()
|
|
|
|
for i in range(batch_size):
|
|
|
|
self._erase(input[i], chan, img_h, img_w, input.dtype)
|
|
|
|
return input
|