**Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture).
This particular model was trained for study of adversarial examples (adversarial training).
Replace the model name with the variant you want to use, e.g. `ens_adv_inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@article{DBLP:journals/corr/abs-1804-00097,
author = {Alexey Kurakin and
Ian J. Goodfellow and
Samy Bengio and
Yinpeng Dong and
Fangzhou Liao and
Ming Liang and
Tianyu Pang and
Jun Zhu and
Xiaolin Hu and
Cihang Xie and
Jianyu Wang and
Zhishuai Zhang and
Zhou Ren and
Alan L. Yuille and
Sangxia Huang and
Yao Zhao and
Yuzhe Zhao and
Zhonglin Han and
Junjiajia Long and
Yerkebulan Berdibekov and
Takuya Akiba and
Seiya Tokui and
Motoki Abe},
title = {Adversarial Attacks and Defences Competition},